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Abstract. We present a  real-time algorithm for human pose detection and tracking 
from vision-based 3D data and its application to tele-rehabilitation in virtual 

environments. We employ stereo camera(s) to capture 3D avatars of 

geographically dislocated patient and therapist in real-time, while sending the data 
remotely and displaying it in a virtual scene. A pose detection and tracking 

algorithm extracts kinematic parameters from each participant and determines pose 

similarity. The pose similarity score is used to quantify patient’s performance and 
provide real-time feedback for remote rehabilitation. 
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Introduction 

Virtual reality based rehabilitation provide controllable environment in which various 

training tasks can be planned. Simultaneous use of different sensory devices provides 

data for real-time feedback and off-line analysis of patient’s performance. In this paper 

we focus on a human guided program where patient and therapist are geographically 

dislocated. We present a real-time human pose detection, which is used to provide 

objective means for comparison of patient’s performance with respect to the therapist’s 

movement. We have built our framework upon our research work in teleimmersion 

[11]. The teleimmersion technology allows remote users to interact through 3D virtual 

environment as if they share the same physical space. In the past we have demonstrated 

benefits of immersive training in teaching of Tai-Chi movements [1], dance [7] and 

remote interaction of basketball players in wheelchairs [2]. This project extends our 

pilot work presented in [5] where a stepping-in-place task was used to evaluate 

movement patterns of healthy individuals from a stereo camera. We have now included 

automatic marker-less pose-detection and full-body tracking, which will be applied in 

different rehabilitation scenarios. In this paper we provide details on the algorithm and 

describe its application for tele-rehabilitation. 

 Framework 1.

In our teleimmersion framework, geographically displaced users are visualized in a 

shared virtual environment via their real-time 3D avatars generated from stereo data. 

We have implemented an adaptive meshing algorithm which provides fast and robust 

computation of surfaces from stereo images. The stereo reconstruction can achieve the 

frame rate of more than 25 frames per second (FPS) on images with the resolution of 

320x240 pixels or about 10 FPS on images with the resolution of 640x480 pixels. 



Further details on the stereo algorithm can be found in [11]. The 3D surface data are 

used to visualize the users of the system and to provide input to markerless analysis of 

the pose. The developed framework creates the necessary pipeline for transfer of video, 

audio and pose data between the sites and visualization of the two displaced persons 

(therapist and patient) in the same virtual environment. 

 Human pose estimation 2.

The problem of human body pose estimation can be stated as follows. Given a set of 

input observations, identify the body configuration of human(s) present in the scene. 

See Figure 1 for an illustration. 

Related work: Pose capture systems can be roughly divided into three groups, 

differing in requirements put on the user and/or environment. Traditionally, pose 

detection & tracking requires dedicated markers attached to the body. Such systems are 

the most reliable and precise; however, they are less appropriate in medical setting due 

to their high price and rather cumbersome setup - attaching the markers or donning a 

suit. Second group consists of marker-less systems with active sensors, such as range 

scanners or structured light systems (e.g. the Kinect [10]). Active systems are less 

obtrusive to the user and no special setup is needed. Their main drawback is a limited 

applicability due to limited range of the active component and possible interference 

with the environment (e.g. sunlight) or other sensors. Finally, passive and marker-less 

systems form the third group [8] which consists of vision-based sensors and are as such 

relatively inexpensive, modular (e.g. additional cameras can be added to cover larger 

areas) and non-obtrusive. Unfortunately, the latter group provide the least reliable and 

precise pose estimation due to appearance and illumination ambiguities.  

Perquisites: A pose estimation running within the 3D tele-immersion framework 

needs to comply with several limitations. To achieve immersive experience, the pose 

must be extracted in real-time, i.e. at 10 frames per seconds minimum, desirably at 

about 20 FPS. Due to constrained bandwidth between remote sites, the information 

shared between individual components of our tele-immersion system is limited to 

reconstructed 3D meshes only. The original captured images are not transmitted and 

thus not accessible to the pose estimation algorithm. The algorithm also has to deal 

with different imperfections and errors of the input data, such as large noise on 

boundaries of segments, incomplete reconstruction due to self-occlusions or ambiguous 

appearance. See Figure 3 for examples of challenging 3D input. 

In the tele-rehabilitation scenario the appearance of users (patient and therapist) 

does not change during a session. The algorithm takes advantage of this, learns 

statistics about the current users on the fly, and uses them in subsequent pose 

Figure 1: The problem of pose estimation. Given an automatically obtained 3D surface mesh, what human 

body configuration does it represent? 



estimation. In other words, starting with a generic model of a human, the model is 

progressively adapted to the actual person in the scene.  

Following from the intended application, input data detail and noise, and run time 

allotment, we estimate the poses in only a rather low level of detail. Our pose consists 

of thirteen 3D points: 2x6 points for shoulders, elbows, wrists, hips, knees and ankles, 

plus the head centre. These define ten body components: head (a sphere), torso, upper 

and lower arms, and upper and lower legs (all represented as cylinders). 

Method: The pose estimation procedure is schematically illustrated in Figure 2. 

Both geometric and appearance properties of persons in the scene are maintained and 

continually adapted, as e.g. in [3][9]. The geometric properties consist of probability 

distributions of the person’s height and limb lengths, which are at the beginning 

initialised with Gaussian distributions centred on generic lengths. The appearance is 

represented by probability distributions of colours observed at individual body parts, 

and are initialised with uniform distributions. Additionally, an application-specific set 

of prior pose constraints is defined, restricting the variety of poses considered. The 

most common prior is that of an upright pose, i.e. of a person standing or sitting.  

The input to the pose estimation algorithm is a 3D triangle mesh reconstructed 

from one or more stereo camera pairs. Each vertex of the mesh is attributed with 

coordinates in the 3D world and colour. In the first step, the 3D mesh is analysed and 

candidate person (or human-sized object) occurrences are approximately localised. 

Figure 2: The pose estimation process. Starting from 3D mesh data the 3D 

space is first searched for candidate human occurrences. From these, the 

head and lower arm candidates are detected by bottom-up processes, 

exploiting online learned appearance and geometry clues, together with 
application specific priors. Finally, the pose is given as the most probable 

combination of all the candidates. 
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Both the appearance properties and the pose priors assign to each mesh vertex a 

probability of it belonging to a body component. Figure 4 shows the joint probabilities 

(a product of appearance and priors) for the head and lower arms. Second step of the 

algorithm uses these probabilities to detect several most probable candidate locations of 

individual body parts.  

In third step a single most probable pose is combinatorially inferred, considering 

only the discrete set of body part candidates proposed in the second step. Several 

aspects are taken into account for the inference:  detection scores from the second step, 

the prior pose constraints, the adapted body geometry (limb lengths) and feasibility 

constraints (body parts cannot intersect). All the constraints are soft, expressed as 

probability distributions.  

Finally, the appearance and geometry models are updated. The update is weighted 

by our confidence that the pose was extracted correctly, a product of two terms: 

probability of the pose given the input, i.e. reflecting how well the pose fits the 3D 

mesh, and a term characterising unambiguity of the pose. The second term favours 

poses with body parts detected in locations out of reach of other body parts. An 

example is a T-pose, with arms wide open, in which the wrist locations are unreachable 

by any other part of the body. 

Figure 3: Examples of challenging 3D surfaces: noise, incompleteness, and self-occlusions. 

Figure 4: Probability maps. Each mesh vertex is assigned a probability of belonging to a specific body part. 

The images show probabilities as intensities, with black for zero and white for one. Starting with uniform 

probability distributions (middle), the probabilities are adjusted based on learned geometric and appearance 

properties and used in bottom-up detection of body parts. The left image shows probabilities of vertices 

belonging to head; the right image is for lower arms. 

Figure 5: Application in tele-rehabilitation. Poses are extracted for both therapist and patient (left), and 

aligned and evaluated (right). 



 Conclusions 3.

The proposed algorithm has been integrated with our teleimmersion framework [11] to 

allow for side-by-side visualization of two remote users (e.g. therapist and patient) with 

real-time pose evaluation (Figure 5). Although we demonstrate the pose detection and 

tracking algorithm on the image-based stereo images, the framework could be applied 

to any depth ranging sensor which can provide visual and spatial information (e.g. 

Microsoft Kinect).  

Examples of readily envisioned tele-medicine and tele-rehabiliation applications of 

the developed algorithm will be remote patient diagnosis and rehabilitation therapy, 

where a care provider and the patient are dislocated, in particular in rural areas lacking 

access to specialist care. This may be pertinent to near future medical landscape where 

it is expected that aging population demands will far exceed the availability of 

therapists and physicians.  

At this stage we are setting up a system of cameras at UC Davis Medical Center 

with focus on the evaluation and training of upper extremities. Within this work we 

will explore how to present and visualize the target pose to the remote user. 

Furthermore, we will investigate how the collected data can be used to generate 

computer controlled motion patterns of an avatar which would automatically adapt and 

promote patient’s performance in addition to human therapist training. 
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