
FACILITATING PATIENT AND ADMINISTRATOR ANALYSES OF ELECTRONIC

HEALTH RECORD ACCESSES

BY

ERIC LYNN DUFFY

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Carl A. Gunter

Abstract

The past two decades in the United States have ushered in an era of increasing ubiquity of digitized healthcare

as the speed and sophistication of technology follows an ever-growing trend. Electronic health records (EHRs)

are an integral part of the growing healthcare industry which offers ease of access and new functionality while

simultaneously causing worries over their privacy and security. In an effort to address these concerns, much

legislation has been enacted in order to tighten the oversight and requirements for accessing protected health

information (PHI). Most recently, the Department of Health and Human Services has released rulemaking

which requires providers utilizing EHRs to comply with patients’ requests for logs of the accesses to their

records.

In this work, we outline our system for complying with this regulation while easing the burden of compli-

ance for providers and simultaneously providing patients with informative and satisfying information about

why their accounts were accessed. We implement a system called the Multiview Audit Interface (MAI) which

utilizes recent research in the data mining and anomaly detection communities to provide a unified interface

for conveniently using these algorithms for patients and administrators. We then test this system on a de-

identified access log from Northwestern Memorial Hospital containing months of audit data. We construct

a framework for implementing these algorithms as modules, thereby recycling existing code, encouraging

multi-faceted comprehensions of their results, and offering an easy-to-use interface that administrators and

patients can use alike. We demonstrate the the power of three modules currently implemented and show

how the extensibility of the framework can be harvested to develop modules in the future.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Chapter 1 Introduction . 1

Chapter 2 EHR Overview . 3
2.1 Benefits and Risks . 3

2.1.1 Quality, Speed, and Convenience . 3
2.1.2 Coordination of Information . 4
2.1.3 Diagnostic Assistance and Error Prevention . 4
2.1.4 Patient Involvement . 5
2.1.5 Cost and Efficiency . 5
2.1.6 Roadblocks to Adoption . 5
2.1.7 Security Concerns . 7

Chapter 3 Regulations . 8
3.1 HIPAA . 8

3.1.1 Privacy . 8
3.1.2 Security . 9

3.2 HITECH . 9
3.2.1 Achieving Meaningful Use . 10
3.2.2 Subtitle D . 10

3.3 OCR NPRM for Accounting of Disclosures . 11
3.4 Access Reports . 11

Chapter 4 Design Requirements . 14
4.1 Cross-platform Compatibility . 14
4.2 Real-time Responsiveness . 15
4.3 Separation of Concerns . 16
4.4 Code Reuse . 16
4.5 Module API Design . 17

4.5.1 Architecture . 17
4.5.2 The Module Lifecycle . 17

Chapter 5 Modules . 20
5.1 Notes and Orders . 20
5.2 Position Explainer . 20
5.3 CADS . 21

Chapter 6 Explanations/Standardized Mapping . 22
6.1 Role and Access Coverage . 22
6.2 Potential Uses . 24

iii

Chapter 7 Implementation . 26
7.1 Model View Controller Architecture . 26

7.1.1 User Interface . 26
7.1.2 Database . 28
7.1.3 Business Logic . 30

7.2 Module API Implementation . 34
7.2.1 The Module Lifecycle . 34
7.2.2 Module Java Interfaces . 34

7.3 Module Implementations . 36
7.3.1 Notes and Orders . 36
7.3.2 Position Explainer . 36
7.3.3 CADS . 37

Chapter 8 Demonstration and Use Case . 41
8.1 Patient View . 41
8.2 Administrator View . 42
8.3 Use Case Discussion . 45

Chapter 9 Discussion . 47
9.1 Affects on Healthcare Information Technology . 47
9.2 Limitations and Future Work . 48

References . 49

Appendix A Database Schema . 51
A.1 Schema Diagram . 51
A.2 Table Descriptions . 52

iv

List of Tables

2.1 Survey results from EHR adopters [21] . 5

3.1 A sample of a de-identified access log . 12
3.2 A list of the nine most active positions within NMH . 13

6.1 An example of NMH positions mapped to HPTCs . 22
6.2 Uncovered Roles . 23
6.3 ICD-9 code coverage of mapped positions . 24

7.1 Statistics of the NMH access log data set . 31
7.2 Capabilities and Interfaces . 34

8.1 Summary of the diagnoses for patient 35347 . 41

v

List of Figures

4.1 Architecural Diagram of MAI . 16

6.1 Uncovered Accesses . 23

7.1 Example of the coloring XML returned from the Coloring servlet 27
7.2 Example of the description XML returned from the Descriptions servlet 28
7.3 SQL query to select all needed information about accesses for the given patient id 33
7.4 A subset of the diagram relevant to the query in 7.3 . 33
7.5 Architecure Component Detail . 33
7.6 Current Module API Java Interfaces Hierarchy . 35
7.7 Query to retrieve Notes and Orders data . 36
7.8 Registration XML for the Notes and Orders module. 37
7.9 Registration XML for the Position Explainer module. 38
7.10 SQL query issued to construct the entire access log for CADS 38
7.11 Registration XML for the CADS module. 40

8.1 The MAI welcome page . 42
8.2 The PositionExplainer module at work . 43
8.3 The MAI administrator display page . 43
8.4 A lightly-colored user affected by the CADS module . 44
8.5 A darkly-colored user affected by the CADS module . 45
8.6 A combination of CADS, Notes and Orders, and Position Explainer modules 46

A.1 Entity Relationship Diagram . 51

vi

Chapter 1

Introduction

The primary focus of this paper will be on the security of electronic health records (EHRs) within the

United States and the context of its legislative and regulatory environment. EHRs are a collection of digital

information about an individual which can be accessed by various actors according to, or in violation of,

over-arching security protocol.

The advent of EHRs within the last few decades has led to an unprecedented growth in the utilization

of new technology in the domain of healthcare. EHRs have the potential to revolutionize the way that

healthcare is conducted by reducing costs, preventing human errors, increasing the speed of communication,

and advancing research.

In spite of this, the explosive growth of information technology in general has led to an influx of concerns

regarding safety and privacy from the general population. There have been numerous examples of personally

sensitive data being stolen, such as social security numbers, credit card data, and passwords to sites con-

taining private information. Likewise, the healthcare information technology industry is no more immune

to these concerns, and it is often an even greater target for parties interested in illegally acquiring personal

information. EHRs often combine medical diagnoses, prescription information, credit card data, addresses,

and much more.

To address these concerns, the United States congress has enacted a large body of legislation which

regulates what information is deemed sensitive, who can legally view or modify such information, and what

patients can do to protect and obtain their own information. Currently, patients in the United States have

the right to request an accounting of all disclosures of their protected health information (PHI) as well as a

record of all entities who access it. Such a right gives patients an abundance of information into the inner

workings of healthcare provider organizations, potentially to the point of confusing the patient and to the

dismay of organizational administrators.

In an effort to help healthcare organizations comply with regulatory requirements as well as to assist

patients in understanding their own access records, we have constructed a system for harvesting the fruits

of ongoing research in the machine learning and anomaly detection communities. This system, called MAI,

1

provides both patients and administrators with tools for interacting with analytical algorithms to yield

constructive information about patients’ access records. The system currently supports two functionalities:

applying coloring rules to the access log elements which correspond to alert levels and providing descriptions

of those elements.

The academic community has put forth a wealth of research designed so address the problem of enforcing

patient privacy. Experience-based Access Management (EBAM) seeks to ensure that the continuously-

evolving ideal access policies do not deviate far from their real-world counterparts [16] by analyzing the way

that EHRs are actually accessed. The Explanation-based Auditing System (EBAS) evaluates the structure

of the audit logs to attempt to determine an explanation for the accesses therein [9]. Other techniques use

audit logs to analyze the access pattern of actors within an EHR system. These include the Community-

based Anomaly Detection System (CADS) [7], the Patient-Flow Anomaly Detection System (PFADS) [30],

and Specialized Network Anomaly Detection (SNAD) [8]. These techniques have been unified within the

Extensible Medical Open Audit Toolkit (EMOAT) [1] to model and analyze EHR access logs. MAI is a

natural extension to the EMOAT project to achieve the goal of increasing patient and healthcare personnel

understanding of acess logs.

The EHR vendor industry has also produced its share of solutions toward solving the problems outlined

in this text. Cerner Corporation has released an audit tool known as P2Sentinel, designed to gather audit

data and present the security personnel with reports and other interfaces for understanding the audit logs

[3]. FairWarning is a company that has produced audit log analytical software to work with multiple EHR

vendors. FairWarning’s software analyzes the audit logs for suspicious patterns and alerts the security

personnel when one is detected [2].

We will begin with a discussion of the present state of electronic health records in Chapter 2 followed

by a discription of the legislative and regulatory history around EHRs in Chapter 3. Next we describe the

design of our system in Chapter 4 before describing the modules currently implemented to work in the MAI

framework in Chapter 5. We discuss how standardized role mappings can be utilized to improve patient and

administrator understanding in Chapter 6. In Chapter 7 we cover the implementation details of the MAI

system. Lastly, we give a demonstration and use case in Chapter 8 followed by a discussion of the project

in Chapter 9.

2

Chapter 2

EHR Overview

An electronic health record (EHR) is a collection of digital data about a patient which is encapsulated in

such a way as to be more-or-less equivalent to a traditional paper health record but one which is more

conducive to electronic applications. EHRs can contain any data which is capable of taking a digital form

and run the gamut from simple text-based nurse’s notes to prescriptions, x-ray images, blood test results

and more. EHRs are widely considered to be crucial to the modernization of the healthcare industry as

they offer tremendous benefits over their paper-and-ink counterparts. In spite of their considerable benefits,

EHRs have been met with numerous concerns regarding their cost of implementation and perceived risks to

privacy.

2.1 Benefits and Risks

EHRs facilitate the ease of record-keeping, removing the need for large storage areas holding paper records,

and eliminate the need for manually transferring records between rooms in an institution, institutions in

a city or state, as well as between countries. Compatibility issues aside, EHRs have the potential to be

accessible from any hospital, clinic, or pharmacy in any part of the world. EHRs are also conducive to

data analysis which can help prevent missed life-saving diagnoses, erroneous prescriptions as well as deadly

medication reactions. EHRs have also been utilized to provide a wealth of research material, in de-identified

form, which is invaluable to researchers across the world.

2.1.1 Quality, Speed, and Convenience

Possibly the single most important aspect of the information technology revolution is the ability to program

a computer to do mundane tasks that would require a human hours, days, or longer to complete. Likewise,

EHRs have the potential to reduce the amount of paper-pushing and routine procedures often associated

with the medical industry. Rather than spending time looking for a paper health record which could be

misplaced, missing, or stolen and is incapable of duplication, an EHR can be instantly accessible from any

3

location in the world with 100% reliability.

EHRs also eliminate the need for redundantly completing information. Once data is entered into an

EHR, it remains there until explicitly removed or updated. E-prescriptions can be transferred from clinic to

pharmacy in milliseconds, thereby eliminating the need for handling forgery- and error-prone prescription

pads. Data analysis can be performed on a patient’s health data to render a diagnosis which could take a

human being hours of poring over medical references to discover, regardless of his or her experience. EHRs

also provide built-in safeguards to alert medical staff of dangerous events such as drug interactions [18].

2.1.2 Coordination of Information

It is not unusual for a patient to be seen by a multitude of personnel, even for the most routine checkups.

Patient health data must be shared and coordinated efficiently between administrative staff, nurses, doctors,

radiologists and specialists to only name a few. Each of these individuals contribute to the care of a patient

in a limited way which must all sum to an effective treatment. To make healthcare more efficient, this

fragmented interaction with a patient’s care needs to be mitigated.

EHRs help ensure that each separate provider has as complete a picture of their patients as possible.

They eliminate the need for redundancy and the risk of data loss when transitioning between different

environments within an organization or between organizations. This greater availability of patient health

information also means that data is available when it is critically needed, such as when a patient is in an

emergency room and cannot provide his or her information [19].

In order to prevent the abuse of this abundance of information, much research has been conducted to

determine the best ways to protect patient data from unauthorized persons while simultaneously making it

available to those who have a legitimate need for it.

2.1.3 Diagnostic Assistance and Error Prevention

Maintaining a centralized point of reference for all of a patient’s medical information yields a great potential

for exploiting this wealth of data to assist medical professionals in making decisions. Computers are becoming

increasingly powerful and can find patterns in data that a human being would struggle to identify even if he

or she is searching for it. EHRs can aggregate a list of patient allergies which can be cross-referenced with

any drugs about to be administered to a patient, thereby averting a deadly reaction if the doctor is otherwise

unaware of the allergy. An EHR is aware of which medications a patient has been prescribed even if the

patient is uncomfortable making their doctor aware of his or her medical history due to its sensitive nature.

Computational power can also be leveraged to identify the best way to code a diagnosis or procedure since

4

Statement Percentage Agreeing
Sending Rx electronically saves time 82
Saves on managing & storing paper costs 75
Overall, their practice functions more efficiently 79
An asset when recruiting physicians 68
Receive lab results faster 75
Produces financial benefits for the practice 67
Enhances data confidentiality 70

Table 2.1: Survey results from EHR adopters [21]

it is virtually impossible for a doctor to be aware of all available codes [20].

2.1.4 Patient Involvement

Since the development of the Internet, the world has become a much more connected and collaborative place.

Now the technology is available for a patient to easily interact with his or her care providers at any time

and from any place. EHRs encourage this kind of distributed collaboration by making health data readily

accessible for both the patient and the provider. A patient can now update his healthcare provider with new

information whenever it is most convenient for the patient and this results in more timely treatment of new

maladies.

The development of the Personal Health Record (PHR) has surfaced in recent years. These records

are chiefly maintained by the patient itself, and allow the patient greater accountability for his or her own

health. Patients are now able to fill in data in a guided fashion which can encourage preventative treatment

and early detection of oncoming disease.

2.1.5 Cost and Efficiency

According to a recent national survey of meaningful-use ready doctors, EHRs have a palpable impact on the

efficiency of healthcare organizations. In each of the statements shown in Table 2.1, more than two-thirds of

respondents agreed that efficiency had increased since the adoption of an EHR. These results suggest that

there is a considerable gain in efficiency within hospitals across the country due to implementing EHRs.

2.1.6 Roadblocks to Adoption

EHR systems, by their nature, are more conducive to being adopted by large organizations rather than

smaller ones. Most of the reasons for this are outlined below: EHRs require a massive commitment from an

organization in terms of money, time, talent, and legal resources. In order for widespread EHR adoption to

become a reality, the following issues must be addressed. [15]

5

Financial Burdens

The financial burden of EHR implementations is probably the single largest barrier to their widespread

adoption. Not only are EHRs associated with a high cost of implementation, but there is a good deal of

uncertainty about their true return for the investment. Implementing an EHR consists of a number of

complex phases including conversion of paper information to electronic data, implementing a system that

works reliably within each organization, configuration to work with existing systems, training the staff to

use it, and maintaining the EHR as the organization evolves over time.

Technological Maturity Concerns

New technologies are innately unstable, and EHRs are no exception. It is not uncommon for the more

conservative consumer to wait some time before he or she begins using a new technology, allowing the early

adopters to handle all of the bugs and difficulties in early versions of a system. It is no wonder, then,

that some healthcare providers would prefer to not adopt a new technology especially when that technology

requires a vast commitment.

Some trained healthcare professionals do not use computers much at home and therefore have little

training that would encourage EHR adoption. Furthermore, EHR systems require large amounts of data for

even mid-level providers and can be exceedingly complex. This can lead to a scenario in which applications

running on top of the EHR system are sluggish to respond, are unreliable in behavior, or may even experience

data corruption. The Certification Commission for Health Information Technology (CCHIT) has sought to

remedy these concerns by giving criteria for evaluating EHR systems.

Complying with Regulations

EHRs, and healthcare in general, are associated with a large and complex body of legislation, much of

which is covered in Chapter 3. While existing legislations take great strides to encourage the adoption of

EHR adoption, there is still a cost-benefit analysis that a provider must consider before implementing an

EHR system. There is currently no legal requirement for adopting electronic health records, but legislation

encourages it by providing financial incentives.

A provider must consider several things when determining if an EHR system is worth implementing.

• How well will one be able to comply with new regulations? Much of the United States healthcare

system reform has introduced new liabilities for providers implementing EHRs, such as offering the

ability for a patient to acquire an access report.

6

• Who will be affected by new legal requirements after adoption? New avenues of achieving results also

enlarge the amount of a provider which can be held accountable. E-prescribing, for instance, makes

ordering prescriptions much easier but also potentially increases the number of physicians making

legally questionable prescriptions.

• How will regulations about disclosures of PHI affect one’s practice? The new ease of information

dispersal accompanying EHRs increases the ability for data to be disclosed. A provider may be

concerned that this encourages PHI being given to inappropriate parties.

2.1.7 Security Concerns

Given all of the potential costs and benefits of adopting an EHR system, it is paramount that the effort of

making EHRs a reality not go to waste by allowing unrestrained access to patients’ sensitive information.

A centralized data store for all patients within a country has typically been poorly received in the United

States. When the Health Insurance Portability and Accountability Act (HIPAA, see Section 3.1) of 1996

was passed, a national patient identifier (NPI) was required by law, but two years later federal funds were

prohibited from being spent on developing the NPI following public outcry [6].

As a result, all of the patient information within the United States is distributed across multitudes of

non-uniform systems which are provided by several vendors. In addition, it is not uncommon for patient

health data to be disclosed to the business associates of healthcare organizations, thereby leading to an even

larger distribution of health data. It is then understandable that so much effort would be put into place to

protect patient health data such as the regulations that we will discuss in Chapter 3.

7

Chapter 3

Regulations

An abundance of legislation and regulation has been introduced into the United States legal system in order to

address the concerns outlined in Chapter 2. In this chapter we will present the two core pieces of healthcare IT

legislation, the Health Insurance Portability and Accountability Act and the Health Information Technology

for Economic and Clinical Health Act, and how they present the need for the research in this text.

3.1 HIPAA

Healthcare information technology has a long history of oversight in the United States, but much of its

modern roots can be traced back to the passage of the Health Insurance Portability and Accountability Act

of 1996 (HIPAA). Prior to the enacting of this law, health insurance entities, now called “covered entities” had

disparate means for conducting administrative business such as submitting claims. Furthermore, there were

no uniform methods or standardizations for exchanging electronic data between healthcare entities nor were

there modern guarantees about the security and privacy of electronic data.[5] To address these concerns, the

United States congress passed HIPAA and, in doing so, included many provisions for protecting the privacy

and security of protected health information.

3.1.1 Privacy

Compliance for the HIPAA Privacy Rule was required as of April 2003 [24]. The Privacy Rule regulations

are intended to prevent the abuse of PHI and ensure that its use is always appropriate for medical care.

Prior to HIPAA, most privacy laws applied to personal information such as financial information but failed

to extend to medical data. In addition to insufficient existing laws, the healthcare privacy law was plagued

with dozens of inconsistent state laws, mostly applying to sensitive diagnoses.[29].

The Privacy Rule uniformly addresses all of these problems by defining how protected health information

may be legally disclosed by covered entities and their business associates. Essentially, any covered entity

may disclose PHI without the patient expressing his or her authorization if the disclosure is for the purposes

8

of treatment, payment, or health care operations.

The nature of the PHI itself is defined by its individual identifiability; that is, if it is identified with an

individual. This type of data includes all possible forms such as writtent, oral and electronic. De-identified

health information has no restricted disclosure and is often used for research purposes.

3.1.2 Security

The Security Rule is a counterpart to the Privacy Rule which applies specifically to electronic health data.

It defines a set of security standards required to be implemented to protect PHI. These standards were

designed to follow best practices and increase patients’ confidence that their PHI would not be improperly

stored, discarded or otherwise leaked. Simultaneously, the Security Rule was written in such a way so as

not to stifle innovation or prevent the full utilization of the benefits of EHRs

The first methods described in the Security Rule for ensuring the security of PHI are those of administra-

tive safeguards. The management of a covered entity is required by law to “reduce risks and vulnerabilities

to a reasonable and appropriate level.” Information access should be governed by a role-based access control

policy and each person should have minimal privileges possible according to his or her role.

Additionally, covered entities are required to fulfill physical security requirements. Not only must facilities

be locked and managed appropriately, but safety measures must be taken moving or disposing of physical

media. For instance, HIPAA requires that the hard disks from terminals containing PHI be wiped so that

the data is irrecoverable.

Finally, technical safeguards must also be put into place to comply with the Security Rule. As previously

mentioned, access controls must be put into place to prevent granting overly-generous privileges to employ-

ees of a covered entity. All PHI must be protected with integrity-checking mechanisms that prevent the

alteration or destruction of data by unauthorized persons. When transferring data between entities, data

must be protected by encryption to prevent eavesdropping or alteration. Covered entities are also required to

implement audit controls. These mechanisms record the accesses made to PHI which can later be reviewed

by security personnel or automated anomaly detection software.

3.2 HITECH

The wide-spread adoption of EHRs came about following the enaction of the Health Information Technology

for Economic and Clinical Health Act (HITECH) of 2009 which was included as a title under the American

Recovery and Reinvestment Act, providing economic stimulus spending. This act greatly incentivized the

9

“meaningful use” of EHRs, meaning that providers must implement and use EHRs in a way that improves

the quality of care in order to take advantage of the incentives. [10] Beginning in 2015, providers who do

not implement a certified EHR will be penalized a percentage of Medicare payments.

3.2.1 Achieving Meaningful Use

The Centers for Medicare and Medicaid Services (CMS) have divided the process of achieving meaningful

use of EHRs into two broad steps, termed Stage 1 and Stage 2 [11]. Stage 1 consists of 15 mandatory

requirements, called Core Requirements as well as 10 other Menu Requirements of which half must be met.

The Core Requirements largely consist of automated statistical data accumulation and reporting as well

as direct electronic equivalents to existing paper record functions. The later category requires functionality

such as maintaining electronic medications and allergy lists, issuing electronic perscriptions and providing

the patient with an electronic copy of their PHI upon request. There are also a few more advanced functions

which are currently technically tractible, including drug-drug and drug-allergy reaction checks and clinical

decision support.

Stage 2 meaningful use has a similar structure, with 17 Core Objectives and 6 Menu Objectives, of

which 3 must be met [14]. Most of the Core Objectives of Stage 2 are duplicates of those in Stage 1 but

are accompanied by more stringent measurements, meaning that the use of EHRs and their associated

applications must be more widespread [13]. Most of the Menu Objectives require the gathering of statistical

information such as family health history or cancer cases and sometimes require submitting them to a

specialized registry.

By incentivizing the widespread adoption of the meaningful use of electronic health records, the United

States government is prioritizing the gathering of personal health data in large amounts and using those data

in novel and varied ways. Rather than inhibiting the march of progress, the United States congress dedicated

a portion of HITECH to the preservation of patient privacy and bolstering the provisions of HIPAA.

3.2.2 Subtitle D

HITECH Subtitle D was constructed to modify existing laws regarding the privacy and security of protected

health information, largely through means of mandatory information disclosures by covered entities, per-

forming audits and strengthening penalties for violators. Under Subtitle D, upon the discovery of a breach of

PHI, a covered entity or the business associate of covered entity is required to notify not only the individuals

affected but also the prominent media outlets[17]. Furthermore, the HHS Interim Final Rule for Subtitle D

modifies the Social Security Act by establishing a tiered set of penalties based on the nature of the violations

10

and by eliminating some exemptions for covered entities which are unaware of violations as well as those

who correct a violation within a timely manner [23].

3.3 OCR NPRM for Accounting of Disclosures

As part of the evolving regulatory landscape of the HITECH Act, the Office of Civil Rights (OCR) within

the Department of Health and Human Services (HHS) published a notice of proposed rulemaking (NPRM)

in May 2011 [22] which announced proposed rules for enforcing the legal document. Among numerous

other changes, HHS stated their intention to extend the existing provision allowing patients to acquire an

accounting of the disclosures of their health information. Prior to the rulemaking, exemptions had been

included for accounting of PHI disclosures made for the purposes of treatment, payment and health care

operations. The NPRM proposed, in contrast, to eliminate this exemption for covered entities utilizing

electronic health records, believing that the overhead for implementing such functionality would be quite

limited. Furthermore, HHS announced that patients would also be able to receive an access report which,

in contrast to an accounting of disclosures, would include a summary of all individuals accessing their

information, regardless of whether the information was disclosed to an external entity.

This new regulation simultaneously promises to give a patient great freedom over his or her own informa-

tion in an electronic medical record by allowing the patient to know precisely who accesses his information

and when. Unfortunately, this also presents a considerable burden on healthcare providers who must pro-

vide these reports as well as respond to any criticisms raised by the patients who receive them. Because

the knowledge of patients and administrators alike is quite limited in the context of such a vast system as

a modern healthcare provider, there needs to be a way to automate as much of the implementation of the

NPRM as possible.

3.4 Access Reports

The NPRM proposed the following data to be present in the access report for each access to a patient’s PHI:

1. The date of access.

2. The time of access.

3. The name of the person, if available, or entity accessing the information.

4. A description of the information accessed, if available.

11

5. A brief description of the action taken, if available.

According to the NPRM, HHS “expect[s] that all access logs include this information, so [they] believe

it should be readily available for inclusion in access reports without substantial burden to covered entities

and business associates.” HHS further does not require the presence of a reason of access because in doing

so “the burden on covered entities and business associates in identifying the purpose of each access to

electronic designated record set information significantly outweighs the benefit to individuals of learning of

such information.” However, it seems likely that a patient, upon receiving a copy of his or her access report,

could become concerned with the nature of the accesses, particularly if their record is accessed by individuals

with unfamiliar role titles whom the patient has never encountered.

Table 3.1 contains a sample of an actual de-identified access log for a single patient exctracted from

Northwest Memorial Hospital in Chicago. In a real-world situation, the users would be identified by their

real name. In the Northwestern Memorial Hospital access log, each user is assigned a position, or role, and

the automatically-generated access reason is often similar to the role description. One can see that if a user

has a highly-specialized role, the natural access reason available will not be clear to the patient.

Date Time Name Reason
11/23/2010 6:33 User A OR RN SC- Primary
11/23/2010 6:56 User B Resident- Inpatient Primary Service
11/23/2010 7:17 User C Anesthesiologist
11/23/2010 7:22 User D OR RN SC- Primary
11/23/2010 7:31 User D CRNA
11/23/2010 7:32 User E OR RN SC- Primary
11/23/2010 8:44 User F Auditing/Quality
11/23/2010 8:48 User D CRNA
11/23/2010 8:52 User D CRNA
11/23/2010 10:42 User G OR RN SC- Primary
11/23/2010 10:46 User H Med Student - Outpatient/ED/Procedures
11/23/2010 10:48 User B Resident- Inpatient Primary Service
11/23/2010 14:32 User I Primary Staff Nurse
11/23/2010 16:57 User F Auditing/Quality
11/29/2010 13:44 User J Billing
11/29/2010 20:39 User J Billing
11/30/2010 12:21 User K Physician Office

Table 3.1: A sample of a de-identified access log

Table 3.2 contains a list of the nine most prevalent positions within the Northwestern Memorial Hostpital

access logs. The positions in this table are ordered by the percentage of encounters accessed by that position.

Typically an encounter is defined as the entire span of time that a patient is at a hospital, so each encounter

can be thought of as a collection of accesses to an EHR. It is unlikely that a patient checking his or her

access record will understand the purpose of any of these positions and it is possible that even a hospital

12

administrator would not know the meaning of some of them.

Position % of Encounters
HIM 93.70%
UR/QA 1 52.36%
HIM - Specialist 16.87%
Reg/Sched Super-User 16.67%
NMPG MD - CPOE 5.24%
NMPG MA 4.25%
NMH Operations 3.79%
UR/QA 2 1.69%
Any of the above 95.69%

Table 3.2: A list of the nine most active positions within NMH

We believe that current technology is sufficiently advanced to address these concerns by assisting both

the patients and administrators in learning about the nature of accesses. Statistical analysis and machine

learning algorithms are capable of detecting patterns within vast amounts of data which can be leveraged to

either explain legitimate accesses or to detect anomalous accesses. Using these techniques, patients can be

given information about the accesses to their EHR in order to alleviate concerns over who is accessing their

information. Meanwhile, administrators can utilize an interface to understand accesses in the event that a

patient is still concerned with an access. He or she can then use that information to act accordingly.

Before we proceed in implementing a system for generating contextualized and descriptive access reports,

we must first analyze the requirements for implementing such a system. It must be capable of responding

to a varied set of users who are widely distributed geographically, responding in a satisfying manner, and

flexible enough to envelop future developments.

13

Chapter 4

Design Requirements

In this chapter we outline the design requirements for the MAI system. This system must simultaneously

satisfy an array of players who will use it:

• Patients must be able to access the system from any location and request an access report in a timely

manner.

• Security Administrators must be able to use the system to gather evidence for or against an investiga-

tion into a HIPAA violation or simply the questions of a concerned patient.

• EHR Administrators must be able to easily configure MAI to work with their EHR implementation

regardless of the technologies they use.

• Researchers and Developers must have a well-defined yet flexible framework for implementing analyt-

ical components into the system. This framework must also be accomodating to new and evolving

technologies.

4.1 Cross-platform Compatibility

Because of the vast array of technologies employed in an EHR environment, it is important to be mindful

when designing MAI of the need for cross-platform compatibility. It is impossible to rely upon patients and

administrators to predominantly use a single operating system or have the necessary set of libraries to use

MAI. With the emergence of smartphones and tablets it is increasingly apparent that supporting one or

even two operating systems would prevent a large swath of the potential users from utilizing MAI.

For these reasons, we have decided to implement the front-end user interface as a web application.

Virtually no consumer-grade electronics with internet access lack a web browser, so the full user base can

take advantage of MAI with existing hardware.

In addition to having a widely-supported user interface, it is necessary to implement the business logic

of MAI in a way such that it could be readily ported to virtually any EHR vendor. Our basic assumption is

14

that the audit logs of any EHR can be gathered in a tabular format such as a Structured Query Language

(SQL) database and retrieved through simple SQL select statements. This assumption is reflected in the

language of the Department of Health and Human Services’s Notice of Proposed Rulemaking regarding

HIPAA’s privacy policy.

The MAI framework was therefore decided to be implemented on top of an Apache Tomcat Java container.

The Java Enterprise Edition runtime has implementations for nearly all operating systems and architectures

used in server environments. Each anomaly detection module used by MAI must then implement a Java

interface to the tomcat server and respect the module lifecycle contract outlined in Chapter 7. Once the

module’s Java interface has been defined, the module is free to follow any code path it requires which includes

querying for access log data, processing the data, and writing intermediate results to disk. At this point it

is up to the module designer to uphold cross-platform compatibility or to disregard it entirely as he or she

sees fit.

4.2 Real-time Responsiveness

The performance of each individual module must have the appearance of real-time responsiveness to the

end user so that when he or she logs into MAI via the web interface, all analysis on the patient’s records is

instantaneously available. Unfortunately, many of the intended modules for use in MAI require a massive

amount of calculations which can require hours or even days on powerful servers, depending on the size

of the access log in question. Furthermore, many modules need some contextual information about the

day-to-day activities within the hospital, how social networks develop over time, and how roles typically

behave. Therefore most modules require more data than simply a single patient’s access log and often the

entire access log must be provided for stable results.

To address this issue, we have divided the module lifecycle into multiple phases outlined in Chapter 7

which includes a preprocessing stage. In this stage, a module is expected to perform computations on as

much of the available access log data as it requires and then store the results so that they can be acquired

later on by the end user. The module will then periodically be updated with incoming access log data and

asked to renew its preprocessing.

A major drawback to this blocked approach is clear: if a patient’s record has been accessed more recently

than the latest module update, then that segment of the audit log will have no associated anomaly informa-

tion. In a real world implementation, we would suggest alerting the administrator when he or she queries

for anomaly data on a patient who has unprocessed accesses so that they don’t mistakenly think that the

15

Figure 4.1: Architecural Diagram of MAI

modules have tried and failed to detect an anomaly.

4.3 Separation of Concerns

Broadly, the MAI architecture can be seen as a model-view-controller architecture. The user, a patient or

administrator, logs into a webpage which displays access logs and information about the accesses, roles, and

users. This component is referred to as the front-end. The core business logic is handled by a Java Enterprise

Edition (Java EE) application running on a Apache Tomcat web server, collectively called the middleware.

The middleware supports a plug-and-play interface for the analytical modules which must simply implement

the necessary Java interface and be registered with the middleware. All of the data to be processed is

contained within a normalized SQL database running on the server, or potentially elsewhere, and is referred

to as the back-end. The high-level architectural diagram can be seen in Figure 4.1.

Because of the need for interchangeable analytical modules, we have designed and developed an applica-

tion programming interface for the modules, called the Module API which is outlined in 4.5.

4.4 Code Reuse

MAI was designed to impose as few constraints on the module developer as possible while still treating each

module as an abstract component. Each module must implement a Java class which is used to interface with

the MAI middleware, but the modules should not be constrained to being programmed entirely in Java.

Much of the machine learning and statistical analysis software used in these respective communities are

16

written in other languages, using other environments. In order to reuse code from Matlab or R, the module

programmer is able to implement a Java wrapper class to interface with the middleware, and then it is free

to use local storage, the network, call external processes, or any other programming contruct it desires.

4.5 Module API Design

The purpose of the Module API is to allow distinct, interchangeable anomaly detection algorithms to operate

in a uniform way on access log data from an Electronic Health Record (EHR). The current focus for this

project is to allow a module to register with a web framework, extract all necessary data for preprocessing,

and, upon requests in real-time, provide a measure of the degree to which an element in the EHR is anoma-

lous. This must be done in a way that is independent of the algorithm’s implementation, so that previously

developed algorithms can be leveraged and so that the author of the algorithm is not constrained to any

implementation decisions.

4.5.1 Architecture

The architecture of MAI is a three-tiered architecture consisting at a high level of the user’s front-end

applications, seen through a web browser, a middleware server hosting a Tomcat Java Servlet container, and

a database containing the EHR access logs.

The middleware is responsible not only for responding to HTTP requests from the clients but also for

coordinating the Module Lifecycle (Section 4.5.2). The middleware must allow module registration and

removal, facilitate organization among modules, supply modules with the EHR access log data in an usable

format, and requesting anomaly measurements for EHR components from the modules.

4.5.2 The Module Lifecycle

Here we will outline the distinct phases in a module’s lifecycle in relation to its interaction within the web

framework. The phases are, in chronological ordering, module registration, preprocessing, real-time queries

(RTQ) and uninstallation. Module registration (Section 4.5.2) enables the MAI middleware to understand

the functionality of a module and know how to shift the flow of execution to it. Preprocessing (Section 4.5.2)

tells the module to begin gathering data, running analysis on it, and storing the results as needed. RTQ

(Section 4.5.2) begins once preprocessing is complete and enables the end user to issue data queries which

complete in real time. Lastly, uninstallation (Section 4.5.2) is called to let the module clean up any and all

intermediate storage that it has used.

17

Module Registration

Each module must make the middleware aware of its existence and supply enough information for the

middleware to know what information to provide and how to understand the module’s output. This process

is called Module Registration (MR) and is implemented by defining a well-formatted Extensible Markup

Language (XML) [28] file containing the meta-data required by the middleware.

The requirements for this stage are:

1. Provide the name of the module.

2. Provide the class name and location of the Java interface for the module.

3. Give the preferred format for data needed for preprocessing, if any.

4. Define the parameters required for the algorithm to yield a result at runtime, i.e., does the module

require a patient ID, user ID, timestamp, etc.

5. Define the return type for real-time queries.

Optional parameters are:

1. Provide extra information for more efficient processing so that, for example, multiple queries can be

combined into a single query.

2. Provide a time frame for how often to update the module with new data.

3. Tell the server that it is or is not okay to cache results between data updates.

4. Provide a true or false value for whether the server should pre-fetch queries from the module before

the user has selected the module. This reduces the latency seen by the user but may not be desirable

if the module requires significant resources.

Once this information is defined in an XML document, the module can be registered and the middleware

will update or append the master XML file which contains the behavior for each module as well as the

protocol for interoperating the modules.

Preprocessing

Since many of the anomaly detection algorithms we will be using require a significant amount of training

time, it is necessary to include preprocessing time in the MAI protocol. Preprocessing can begin at any

time the middleware desires, so long as it has audit log data ready for consumption by the modules, by

18

calling the preprocess() method exposed by the class referenced in the module’s registration XML file. The

middleware will supply data in the format requested in the same XML file. The module must also implement

a preprocessingComplete() method which will return true when the module has finished this stage.

Real-time Queries

Once the module returns true from the preprocessingComplete() method, the middleware will enable users

to select the module via the front-end web application. The middleware will supply the module with the

data defined in the registration XML file, as well as an API for making queries on the database. The

module will return data in the format defined. The middleware will then construct the webpage for the

client appropriately.

Uninstallation

If a module needs to be removed, it should provide a cleanup() method to destroy all of the persistent data

it has created.

19

Chapter 5

Modules

In this chapter we outline the modules which have been thus far implemented in the MAI system. Each

module has its own set of required parameters as well as its own information that it yields. Every module

must be handled in a uniform manner by the MAI system, so we discuss how the architecture outlined in

Chapter 4 addresses this. The implementation details for each module can be found in Section 7.3

5.1 Notes and Orders

The Notes and Orders module looks at the current state of the access log and looks for accesses for which

there was a change to a note or an order. The core reasoning for this module is that if an EHR user, such as

a nurse, examines a patient’s record, they are unlikely to make a note or an order if the access is illegitimate

in nature. When a user makes such a modification, the notes and orders are typically reviewed by at least

one other member of the staff, therefore bringing attention to the access.

The Notes and Orders module requires no preprocessing or uninstallation time, but does need a database

connection during the RTQ phase. In a strict sense, Notes and Orders only requires an access id as input,

but for efficiency purposes it should be given the patient id as well so that batch processing can occur.

5.2 Position Explainer

In order to give both patients and administrators some textual information about why a user accesses a

patient’s record, we have developed the Position Explainer module. This module builds on the principles

which will be discussed in Chapter 6 by calculating the likelihood of a user accessing a patient’s record based

on the patient’s diagnosis information.

Each patient has zero or more ICD-9 diagnoses associated with them and patients with similar diagnoses

tend to follow similar workflows. For example, when a patient is admitted to a hospital with a broken leg he

or she will follow a routine procedure such as check in at reception, have a physical examination, go through

radiology for an x-ray, have a cast placed on the leg, and discharge. It is highly unlikely that a patient with

20

a broken leg will need an abdominal ultrasound or a psychiatric screening, such as are common for expecting

mothers and mental health patients, respectively. This principle means that many diagnoses have a high

likelihood of being accessed by a particular user if that user has one of the common roles associated with

the diagnosis.

The Position Explainer module requests a patient id and user id as input and returns a description if

that user’s position has a sufficiently high likelihood of accessing the patient based on his or her diagnoses.

For each diagnosis belonging to the patient, the module determines the likelihood a role accessing a patient

with that diagnosis and repeats this for each role belonging to a user in the patient’s access log. If the

likelihood is higher than a tunable threshold, the user is given a message stating that the user’s position is

highly associated with his or her diagnosis.

5.3 CADS

The community-based anomaly detection system (CADS) was developed to detect anomalous actors within

a collaborative information system [7]. CADS works by building a social network that connects users who

access the same patient record within an EHR. Once the social network has been constructed, CADS performs

principal component analysis on the network to extract the principal communities within the network. After

this decomposition, each user can be compared to his or her nearest neighbors via the k-nearest neighbors

algorithm which then gives a deviation for each user from his or her community.

CADS requires considerable preprocessing time compared with the other two modules as it performs

a number of complex calculations on a large data set. CADS asks for a patient id during its session

initialization phase so that it can quickly return its results without needing to repeatedly look up results for

each user when only a small number of users are anomalous. It returns both a double as an anomaly score

as well as a description yielding information about why the user was detected as anomalous.

21

Chapter 6

Explanations/Standardized Mapping

Since the position names within the NMH data set can be unclear, ambiguous, and difficult to understand,

we hope to be able to soon be able to map these positions to a widely standardized set of values that have a

clearer meaning. One way of achieving this is to use the Healthcare Provider Taxonomy Code (HPTC) Set

[12], which is a hierarchical set of standardized position codes used in the United States.

6.1 Role and Access Coverage

We have acquired a mapping between the position names in the NMH database and the codes in the HPTC

set, courtesy of Dan Cushman, which we hope to leverage for this purpose. An example of the mapping is

shown in Table 6.1.

Unfortunely, this mapping is not complete. Of the 159 positions that we have in our data set, only 66

(41.5%) are mapped to HPTCs. We will refer to those positions with a HPTC code as “covered” positions

or “covered” roles. Luckily, most of the more common positions do have mappings, as 4,984,334 out of the

6,075,530 (82.0%) accesses in database are made by a user with a position that is mapped to an HPTC. In

fact, 44% of the accesses made by uncovered roles are due to a single role, “Patient Care Assistive Staff”.

Nearly all (90%) of these uncovered accesses are attributed to 14 of the 93 (15.0%) uncovered roles, which

are shown in Table 6.2. The distribution of the uncovered roles can be seen in Figure 6.1. Since the graph

demonstrates a rather sharp decline in the coverage, we may be able to utilize the mapping that we have to

discover a clearer structure from the positions in our data set.

NMH Position HPTC HPTC Description
Chaplain 374K00000X Chaplain
Dietary 1 133V00000X Dietitian, Registered
ED Patient Care Staff Nurse 163WE0003X Emergency
NMPG APRN 364S00000X Clinical Nurse Specialist

Table 6.1: An example of NMH positions mapped to HPTCs

22

Position % of Uncovered Accesses
Patient Care Assistive Staff 44.3
Unit Secretary 1 11.6
UR/QA 1 11.2
NMH Physician Office - CPOE 5.7
HIM 5.4
Health Information Audit-Consultant 2.3
NMPG OB PEDS MD - CPOE 1.8
NMH Resident/Fellow ID Clinic-CPOE 1.5
ED Assistant 1.1
ED Unit Secretary 1.1
ED NMH Physician-CPOE 1.1
Unit Secretary 2 1.0
Reg/Sched Super-User 1.0
ED Coder 0.9

Table 6.2: Uncovered Roles: The roles that together account for 90% of the uncovered accesses.

Figure 6.1: Uncovered Accesses: The percentage of accesses left uncovered by each role, sorted by
decreasing coverage and summed. The first 14 roles account for 90% of the uncovered accesses while the
first 44 account for over 99% of the uncovered accesses.

23

ICD9 Code # Prob = 1 Description
238.73 19 High grade myelodysplastic syndrome . . .
250.71 17 Type I (juvenile type) diabetes . . .
250.81 17 Type I (juvenile type) diabetes . . .
191.1 16 Malignant neoplasm of frontal lobe . . .
891.2 16 Open wound of knee, leg (except thigh). . .
208.9 15 Unspecified leukemia
237.6 15 Neoplasm of uncertain behavior of . . .
713.0 15 Arthropathy associated with other . . .
781.5 15 Clubbing of fingers
228.02 14 Hemangioma of intracranial structures
287.9 14 Unspecified hemorrhagic conditions
441.3 14 Abdominal aneurysm, ruptured
753 14 Congenital anomalies of urinary system
V10.42 14 Personal history of malignant neoplasm . . .

Table 6.3: ICD-9 code coverage of mapped positions: The number of positions for which the likelihood
accessing the given diagnosis is 100%, sorted by the number of positions with that probability.

6.2 Potential Uses

One immediate application of these results is to discover the how well accesses to patients having a particular

diagnosis can be explained by the user’s position. If we can map multiple NMH positions to their equivalent

HPTC, then we can discover how likely a HPTC position is to access a diagnosis. This analysis can also be

repeated by wrapping multiple HPTC codes into a higher level in the HPTC hierarchy.

To get an idea of how well these results can be utilized, we ask the question: What is the liklihood of

a diagnosis being associated with a position code? This can be answered simply statistically analyzing our

data set. For each diagnosis and HPTC, we calculate how many patients with the diagnosis are accessed by

a position with the HPTC out of how many patients have the diagnosis.

It turns out that for many ICD-9 codes, the likelihood described above is very high for a large number

of positions. Table 6.3 gives a list of the top 14 most well-covered ICD-9 codes by this calculation. The

first column is the list of ICD-9 codes sorted by the value in the second column, which are the number of

positions for which the probability calculated above is 100%. The last column gives the description of the

ICD-9 code.

With the further development of the HPTC mapping, or other similar ways to derive standardized

positions from the NMH positions, we should be able to better understand the structure of the data set

in terms of how users access patients with certain diagnoses. This information can then be leveraged in

the development of a new module which analyzes the likelihood of a user accessing a patient based on his

diagnosis.

This type of module is currently implemented as the Position Explainer module, mentioned in Section

24

5.2, but does not utilize the standard mapping because it is not sufficiently developed at this time.

Another potential use for this mapping would be to utilize external references to the HPTC mapping.

For instance, the user could be provided additional information about the position who has accessed their

record, such as a website detailing the purpose of each role. This would be a significant benefit for the

patient so that he or she would not be left wondering what the esoteric positions are that reference his or

her account.

25

Chapter 7

Implementation

We will now discuss the current implementation details of the MAI system including the various technologies

that are used and the ways in which the design goals set forth in Chapter 4 are achieved.

7.1 Model View Controller Architecture

The Model View Controller (MVC) architecure is implemented, broadly, as a user interface (the front-end), a

server managing business logic (the middleware) and a database (the back-end). Patients and administrators

who wish to use MAI do so by logging in to the front-end via a webpage, served by an Apache Tomcat web

server running Java code. This web server contains all of the middleware which manages querying the

database, organizing it, calling the analytical modules, and responding to the users’ HTTP requests. The

database contains a normalized data set retrieved from Northwestern Memorial Hospital of the inpatient

access log over the course of 128 days.

Figure 7.5 contains a diagram of how the components are divided between front-end, middleware, and

back-end and the technologies used to communicate between them.

7.1.1 User Interface

The MAI user interface is implemented as a set of JavaServer Pages (JSPs) which are compiled by the

middleware before being sent to the user for viewing. The user’s browser also makes asynchronous calls via

JavaScript to the middleware where Java servlets reply to the requests.

The current implementation of the MAI front-end divides the user interface into two perspectives: Patient

View and Administrator View. The Patient View is primarily a restricted version of the Administrator View,

hiding information which is sensitive in nature, such as users or accesses which are detected as “anomalous”

by the modules.

26

<coloringlist>

<coloring>

<userId>34357</userId>

<doublerank>1.0</doublerank>

</coloring>

</coloringlist>

Figure 7.1: Example of the coloring XML returned from the Coloring servlet

Administrator View

The Administrator View consists initially of a page in which the user inputs a patient ID into a text field for

querying. In a real-world implementation, this would probably have multiple options for querying a user’s

identity as it is rare for healthcare workers to have a unique identifier for a patient. Since our dataset is

de-identified, the field only asks for the patient id field from the patient table in the database. This ID

is a primary key for the patient table and is therefore unique.

When the patient id is submitted to the form, the server responds with a new page consisting of a

complete list of audit logs for that patient. This is divided into possibly several HTML tables, one for each

of the patient’s encounters. The user is then presented with buttons for each of the active modules currently

available. If a module has encountered an error, or its preprocessing stage is incomplete, the button will not

be shown.

When the user clicks a module button, an asynchronous call is made via JavaScript to the middleware

by an HTTP GET request issued to the appropriate servlet. Currently the middleware implements two

Java servlets, Coloring.java and Descriptions.java which handle, respectively, the tasks of coloring the

access log and providing descriptions of the access log.

The HTTP GET request issued by the client-side JavaScript is sent a URL specifying the servlet to

call (either Coloring or Descriptions). with the module id and patient id as query parameters. The

module id is a universally unique identifier (UUID) generated when the module is registered, and the

patient id is the patient’s primary key in the patient table.

The servlet then calls the appropriate module and returns XML to the client containing the coloring or

descriptions information, such as seen in Figures 7.1 and 7.2. The user’s JavaScript then parses the XML

and either adds coloring to the access log or generates a icons notifying the user that there is a description

available. The user can then hover over the icon to read the description.

27

<descriptionlist>

<description>

<accessId>312546</accessId>

<value>The user for access 312546 wrote to a note or order.</value>

</description>

</descriptionlist>

Figure 7.2: Example of the description XML returned from the Descriptions servlet

Patient View

The Patient View for the front-end is, currently, just a restriction of the Administrator View. It is necessary

to limit the amount of information presented to the patient, especially when there are potential HIPAA

violations being considered.

The Patient View is implemented using the same technology as the Administrator view, but the set of

modules exposed to the user are restricted. Currently, only the Position Explainer module is available to the

patient because it only provides information explaining the roles which are present in the access log. The

other two modules provide more detailed anomaly detection information and are therefore not given to the

patient.

7.1.2 Database

The access log data in the data set was supplied by the Northwestern Memorial Hospital (NMH) in Chicago,

Illinois and was gathered between late 2010 and early 2011. The dates in the access log are shifted from their

actual dates of occurrence in order to comply with HIPAA de-identification rules, but the dates are accurate

relative to each other. The dates in the access log span from September 4st, 2010 to January 10th, 2011. It

countains over 6 million accesses divided into more than 30,000 encounters. The NMH data set was supplied

as a series of flat comma-separated value (CSV) files extracted from NMH’s inpatient Cerner system.

In order to make sense of such a large data set and be able to process it quickly, we wrote a set of Python

scripts to read the raw CSV data and insert them into a normalized MySQL database and validate the data

once it was stored.

The structure of the database itself can be examined in detail in Appendix A by viewing the entity

relationship diagram and table summaries there. A number of tables not relevant to this work were excluded,

namely those relating to outpatient access data.

28

Structure

In an effort to normalize the database, thereby minimizing its disk footprint, de-duplicating data, and

improving query efficiency, many tables were constructed to hold static data which was frequently repeated.

A summary of those tables follows.

• department: Each user is associated with one or more departments, such as “Allergy & Immunology”

and “Neurology”. There are 99 distinct departments represented in the data set.

• icd9 data: The data set consists of 11192 distinct International Classification of Diseases (ICD) version

9 (ICD-9) codes [27], divided between 1683 procedure codes and 9509 diagnosis codes. These codes

are an internationally standardized set of codes for the purposes of uniformly identifying diseases and

procedures. The icd9 data table consists of a textual code and a type field denoting whether it is for

diagnosis or procedure. The desc field contains a short description of the code, such as “Aneurysm

and dissection of heart.”

• location: This table contains the set of locations referred to in the NMH access logs. There are 57

distinct locations such as “Prentice 16” which typically have a ward- or floor-level granularity. No

locations are specific enough to identify an individual room.

• patient service: The patient service table contains a set of “services” to which a patient can be-

long. These bear a passing resemblance to the department table, but are not identical. Furthermore,

patient service elements are associated with a patient rather than with a user. Some examples

include “Obstetrics” and “General Medicine.”

• reason: The reason values are short strings that are highly correlated to the user’s role. None of the

reason values contain any contextual information about why an access is made. Examples include “ED

Patient Care Staff Nurse” and “HIM.”

• role: This table contains the roles, or positions, of a user. Most of them are highly abbreviated and

specialized names, such as “NMPG OB PEDS MD - CPOE”.

The database also consists of a number of structural tables, used to form associations between multiple

tables.

• user dept list: Since each user is associated with multiple departments, this table is needed to enable

such a one-to-many mapping. Each row in user dept list contains a reference to both the user table

and the department tables.

29

• problem: Each patient must be associated with multiple ICD-9 diagnosis and procedure codes, so the

problem table exists to achieve this.

• icd9 grouping: The ICD-9 codes form a hierarchy, wherein each ICD-9 code in the icd9 data table

is at the bottom. The higher levels of the hierarchy are represented in the icd9 grouping table by

referencing the first and last (inclusively) ICD-9 codes in that grouping. The table refers to itself

through the parent id field and provides a text description of each grouping in the desc field.

The user and patient tables are structured as follows.

• user: This table encapsulates all data about an EHR user, one of the people working in Northwestern

Memorial Hospital who is recorded in the access logs. Each user has a user pseudonym that was

assigned at the time the access log data was extracted, thereby uniquely identifying each user in a

de-identified way. Each user has a role id which maps to a position in the role table.

• patient: Like user, each patient has a pseudonym assigned in the same way. Each patient also has

an age value and a zip code, de-identified to the initial three digits.

Lastly, the access and encounter tables contain the core information that we are interested in in this

work.

• encounter: An encounter starts whenever a user is admitted to a clinic and ends when the the user is

discharged and the billing cycle is complete. As such, each encounter has a start date (enc start dttm)

and an end date (enc end dttm). It has a reference to the patient id in the patient table for the

patient of this encounter. It also has a enc id which separates each encounter for a patient in the

original data set.

• access: An access associates many entities together and is generated whenever a user accesses a pa-

tient’s record within the EHR system. Each encounter is associated with a encounter,

patient service, user, and reason. There is also a date and time associated with the access in

the field user access dttm. Each access also has a user note cnt and user order cnt which de-

scribe, respectively, the number of notes and orders created on this access.

7.1.3 Business Logic

The core of MAI is implemented as a series of Java classes and libraries running inside an Apache Tomcat

Java container. All of the code for receiving and responding to HTTP requests, issuing queries, and launching

modules is implemented in this component.

30

Measure Value
Accesses 6075530
Encounters 30913
Patients 25343
Users 8341
Roles 159
Reasons 287
Departments 99
Locations 57
Patient’s Services 34

Table 7.1: Statistics of the NMH access log data set

Key Classes

There are several Java classes that are critical to understanding how the MAI middleware functions.

Module: The Module class encapsulates the metadata about each of the modules registered on the server.

This class defines enumerates for the acceptable fields in the module registration XML files: ProcessingType,

ParameterType, and ReturnType. PreprocessingType can be either None or DBInstance, which determines

the behavior to take at preprocessing. ParameterType can be any of the values listed in the first column of

Table 7.2 following “parameter”. ReturnType currently only has the values of Double0To1 and Description.

The former states that the module returns a double value between 0.0 and 1.0, which can then be mapped

into a color. The latter provides a brief description of the results that the module found.

Module also has three nested static classes which encapsulate parts of the metadata within the reg-

istration XML. PreprocessingMeta describes the preprocessing information, InitializationMeta gives

information about what is required when the server initializes a new user session, and RuntimeQueryMeta

stores information about the inputs and outputs expected when processing a query. InitializationMeta

is currently used to bundle multiple queries into a single batch processing via the BatchProcess interface.

ModuleRegistry: As its name suggests, the ModuleRegistry is responsible for maintaining a collection

of modules which are registered with the server. It is a singleton class so that there is only a single instance

of the ModuleRegistry present on the server’s virtual machine at any time. The ModuleRegistry generates

a universally unique identifier (UUID) for each module registered with the middleware, so that the front-end

can have an unambiguous means to reference a module.

DBConnectionManager: This class is a thin wrapper around a JDBC instance which facilitates querying

the database for the module developer. It is instantiated by the MAI middleware with read-only capa-

bilities to prevent any unwanted changes to the database. This object is passed to every module via the

setConnectionManager() method required by the ModuleInterface class. This interface is described in

more detail in Section 7.2.2.

31

Bootstrap Process

When the Tomcat server is started, a bootstrap thread is launched in order to initialize the server. At this

point, the server instantiates the ModuleRegistry and loads the module definitions from their XML sources

as outlined in Section 7.3.

Once all of the Module objects have been generated from the XML, their structure is validated. The

server verifies that the class referenced in the registration XML can be located and implements all of the

required interfaces based on their declared capabilities. This is done according to the specification shown in

Table 7.2.

After the structure of the ModuleRegistry has been validated, the bootstrap thread initializes the

DBConnectionManager for each module and passes it through the ModuleInterface.

setConnectionManager() method. The middleware then calls the ModuleInterface.preprocess() method

to begin module preprocessing. The server quickly checks to see if the preprocessing is complete by call-

ing ModuleInterface.pre- processingComplete() so that modules without preprocessing can be set to a

complete state immediately.

HTTP Responses

After the bootstrap thread finishes, the middleware is ready to begin serving clients who log on via the MAI

webpage. A thin shell of the webpage is implemented through JavaServer Pages. These pages are compiled

into Java bytecode when a client issues an HTTP request, and the execution of that bytecode results in a

standard HTML webpage.

Based on the user’s actions one of three pages is displayed: the welcome page, the administrator query

page, and the patient query page. The welcome page is a screen asking for the user to either select the

administrator or patient views, or to issue a query for a patient id. When a query is submitted from the

welcome page, it defaults to the administrator view.

When the user inputs a patient id query, a helper class called IndexHelper is instantiated with the

HTTP request data. This helper class then handles all of the logic behind what content is generated and

forwarded back to the user as HTML. The IndexHelper issues the query in Figure 7.3 against the back-end

looking for all accesses to this patient. This query finds all encounters belonging to the current patient

32

s e l e c t a . a c c e s s i d , a . u se r acce s s dt tm , a . u s e r id , r . r o l e d e s c , a . e n c u n i q i d
from a c c e s s a inner j o i n user u on a . u s e r i d = u . u s e r i d
inner j o i n r o l e r on r . r o l e i d = u . r o l e i d
inner j o i n encounter e on e . e n c u n i q i d = a . e n c u n i q i d
where e . p a t i e n t i d = <p a t i e n t i d >
order by e . enc un iq id , a . u s e r a c c e s s d t tm ;

Figure 7.3: SQL query to select all needed information about accesses for the given patient id

Figure 7.4: A subset of the diagram relevant to the query in 7.3

Figure 7.5: Architecure Component Detail. The large boxes are, from left to right, the front-end,
middleware, and back-end. The front-end communicates with the middleware through HTTP while Tomcat
listens for incoming connections. Once a request is received it is forwarded to the MAI Java code. MAI
communicates with the registered modules via a series of Java Interfaces and supplies a read-only database
connection to the modules.

33

Capability Java interfaces Optional? Phase when called

Any ModuleInterface.java N Module initialization

parameter/AccessId NeedsAccessId.java N Query Initialization/Runtime Queries

parameter/UserId NeedsUserId.java N Query Initialization/Runtime Queries

parameter/RoleId NeedsRoleId.java N Query Initialization/Runtime Queries

parameter/PatientId NeedsPatientId.java N Query Initialization/Runtime Queries

parameter/Timestamp NeedsTimestamp.java N Query Initialization/Runtime Queries

returnType/Description ReturnsDescription.java N Runtime Queries

returnType/Double0To1 ReturnsType.java N Runtime Queries

returnType/Double0To1 BatchProcess.java Y Runtime Queries

Table 7.2: Capabilities and Interfaces: The capabilities of a module and the required Java interfaces to
implement them. The first column contains the capability, which are divided into their semantic meaning,
i.e. whether they are a parameter or return type. Items marked “parameter/X” mean that X is a required
parameter and items marked “returnType/X” mean that X is returned by the module. In both cases X
must be declared in the registration XML. The second column gives the Java interface to implement and
the third column states whether it is optional to implement the interface in order to have that capability.
The last column gives the lifetime phase(s) in which that interface is used.

7.2 Module API Implementation

7.2.1 The Module Lifecycle

The module lifecycle is heavily controlled by the information that is defined in each module’s registration

XML. Examples of these XML files can be found in Figures 7.8, 7.9 and 7.9. When a module is registered, the

ModuleRegistry organizes all of the parameters required in the following phases of the module’s lifecycle.

During Phase 2, preprocessing, the module is given a database instance and told to begin preprocessing.

When the module begins declaring that its preprocessing is complete, the module buttons become visible to

the front-end user and the module enters Phase 3, run-time queries (RTQ).

Each time a user queries for a patient on the front-end, the module is given the type of data it declares as

a parameter in the initializationMeta element. The purpose of initialization metadata is mostly to yield

more efficient queries and computations which assure a more responsive user interface. Then the middleware

gives the module the parameters it requests in the runtimeQueryMeta element.

Phase 4, uninstallation, is not currently implemented.

7.2.2 Module Java Interfaces

When a module capability is declared in the registration XML file, the accompanying Java interfaces must be

implemented within the interface for that module so that the middleware can call the appropriate methods.

A summary of which Java interfaces go with each capability can be located in Table 7.2. The interface

hierarchy is shown in Figure 7.6.

34

Figure 7.6: Current Module API Java Interfaces Hierarchy

35

select a.access_id from encounter e

inner join access a on a.enc_uniq_id = e.enc_uniq_id

where e.patient_id = <patient_id>

and (user_order_cnt > 0 or user_note_cnt > 0)

Figure 7.7: Query to retrieve Notes and Orders data

7.3 Module Implementations

7.3.1 Notes and Orders

The Notes and Order module is implemented entirely in Java. The Notes and Orders module class directly

implements four Java interfaces: NeedsPatientId, NeedsAccessId, BatchProcess<Integer,Double>, and

ReturnsDescription. It implicitly implements ModuleInterface and ReturnsType<Double> since

ReturnsType<Double> is a superinterface of BatcProcess<Integer,Double> and ModuleInterface is a

superinterface of all the Module API Java interfaces. The module registration XML can be seen in Figure

7.8.

Since Notes and Orders does not require any preprocessing, the

ModuleInterface.preprocess() method is blank and ModuleInterface.preprocessingComplete() re-

turns true immediately.

The registration XML states that to initialize the ModuleInterface for each query session, the patient id

should be provided. This allows the Notes and Orders module to retrieve all of the access data for the given

patient within a single query, rather than depending upon the middleware to send each access id one at a

time. When initialization occurs, the Notes and Orders module then issues the query in Figure 7.7 to retrive

the patient data.

When performing batch processing, the BatchProcess<Integer,Double>. getResultMap() function

returns a map associating access ids with a double value score. If an access appears in the query in Figure

7.7 then the score is set to a constant value representing a non-suspicious score. When an access does not

result from the above query, its score is omitted and assumed to be neutral.

7.3.2 Position Explainer

Like Notes and Order, the Position Explainer module is implemented entirely in Java and does not require

any preprocessing, though its performance would be improved if it were implemented. Position Explainer

is not like the other two modules in that it does not return any anomaly detection results, but rather only

explains the accesses that occur in the log. It does this in the following way:

36

<?xml version="1.0" encoding="utf-8"?>

<module>

<name>Notes and Orders</name>

<class>seclab.aod.module.NotesAndOrdersModule</class>

<location>/NotesAndOrdersModule.class</location>

<preprocessingMeta>

<dataFormat>None</dataFormat>

</preprocessingMeta>

<initializationMeta>

<parameters>

<parameter>PatientID</parameter>

</parameters>

</initializationMeta>

<runtimeQueryMeta>

<parameters>

<parameter>AccessID</parameter>

</parameters>

<returnTypes>

<returnType>Double0To1</returnType>

<returnType>Description</returnType>

</returnTypes>

</runtimeQueryMeta>

</module>

Figure 7.8: Registration XML for the Notes and Orders module.

• Issue a query for all diagnoses for this user.

• For each diagnosis, query for how many patients with that diagnosis are are in the entire access log.

• Query for how many patients are accessed by that role in total.

• Combine the last two values into a probability, i.e. find how likely a role is to access that diagnosis.

• If the resulting probability is greater than some threshhold, report it to the user.

Note that this module could easily be also implemented as an anomaly-detection module by using the

reported probabilities to determine an anomaly score. The registration XML for this module is available in

7.9.

7.3.3 CADS

The CADS module is by far the most complex of the three modules implemented so far. CADS requires a

considerable amount of preprocessing time in order to run on the entire access log, regardless of the k value

it is given. It also requires persistent storage on the machine on which it is implemented. There are also a

number of ways in which to use the results that it returns to assign anomaly scores.

37

<?xml version="1.0" encoding="utf-8"?>

<module>

<name>Explain Positions</name>

<class>seclab.aod.module.PositionExplainer</class>

<location>/PositionExplainer.class</location>

<preprocessingMeta>

<dataFormat>DBInstance</dataFormat>

</preprocessingMeta>

<initializationMeta>

<parameters>

<parameter>PatientID</parameter>

</parameters>

</initializationMeta>

<runtimeQueryMeta>

<parameters>

<parameter>UserId</parameter>

</parameters>

<returnTypes>

<returnType>Description</returnType>

</returnTypes>

</runtimeQueryMeta>

</module>

Figure 7.9: Registration XML for the Position Explainer module.

select e.patient_id, a.user_id from encounter e

inner join access a on e.enc_uniq_id = a.enc_uniq_id

order by a.user_access_dttm

Figure 7.10: SQL query issued to construct the entire access log for CADS

38

The CADS code itself was implemented in the R programming language by the authors of [7]. Executing

the CADS module therefore requires the R environment to be installed and configured on the server. When

the preprocessing stage is reached, the CADS module retrieves a stripped-down form of the access log for

processing. The input to the CADS R code is a series of three vectors in a specific format. Each vector

is length N where N is the number of distinct accesses in the access log. The first vector represents the

users, the second is the patients, and the third are the number of times the ith user accessed the ith patient’s

record. The values in the user and patient vectors are simply unique identifiers which are sequential between

1 and the maximum number of users or patients, respectively.

The access log is gathered by executing the SQL query in Figure 7.10 with optional limitations such as

setting the maximum number of records retrieved or setting the start and end dates and times. Once the

patient and user identifiers are gathered, they are then mapped to sequential values beginning at 1 and saved

to disk. The CADS module then constructs the R code from the script source and tells R to load each of

the values from disk and execute the CADS script. The output is published to an XML file in a temporary

directory and read back in through Java.

Once the CADS scores are generated, there are two options currently implemented in the CADS module

for converting these scores to anomaly values. The first approach is to divide the scores into percentiles

of some given size and take the topmost partition based on that percentile. With this approach you are

guaranteed to get the top p% of scores for a given percentile p. The better approach, which is the default,

is to calculate the standard deviation and mean on the deviations returned by CADS and assign anomaly

scores to users based on their distance from the mean. Both of these approaches are performed by inserting

R code into the script and having R execute the statistical analysis, rather than implementing it in Java.

The current implementation of the CADS module using a k value of 10 and a 100,000 record subset

of the entire access log. It uses the normal distribution method for determining anomalous users with a 2

standard deviation threshold. When it finds a user having a CADS score 2 standard deviations away from

the mean, it assigns a color to that user based on the z-score. This way, users who are further from the mean

will appear a deeper red than those who are closer to the mean. All users who fall within the 2 standard

deviation threshold are not colored.

The CADS module also produces a description of the coloring for all users who lie outside of the threshold,

which alert the front-end user to the reason why the user was colored red.

39

<?xml version="1.0" encoding="utf-8"?>

<module>

<name>CADS</name>

<class>seclab.aod.module.CADSModule</class>

<location>/CADSModule.class</location>

<preprocessingMeta>

<dataFormat>DBInstance</dataFormat>

</preprocessingMeta>

<initializationMeta>

<parameters>

<parameter>PatientID</parameter>

</parameters>

</initializationMeta>

<runtimeQueryMeta>

<parameters>

<parameter>UserID</parameter>

</parameters>

<returnTypes>

<returnType>Double0To1</returnType>

<returnType>Description</returnType>

</returnTypes>

</runtimeQueryMeta>

</module>

Figure 7.11: Registration XML for the CADS module.

40

Chapter 8

Demonstration and Use Case

This chapter will present an example scenario in which MAI is utilized by both a patient and administrators.

We hope to demonstrate the power of MAI in satisfying the requirements of patients and administrators

alike, and give a taste of what can be had once more modules are developped and MAI becomes more than

a prototype.

8.1 Patient View

Imagine that you were recently a patient in a hospital who has undergone treatment for issues related to

your internal organs. You were given the patient id of 35347and diagnoses in Table 8.1 during your five

encounters at the hospital.

You remember there being a lot of people coming in and out of your hospital room, so you become curious

to know who all these people were and why they need access to your sensitive personal information. You

know that you have the right to an access report, so you file a request with the provider, who are obligated

by law to give it to you.

The provider responds telling you to log into their MAI web page using your patient id. You log on to

the page and are greeted with the welcome screen, as in Figure 8.1.

You click on patient view and enter your patient id in the search field, which produces a list of your

accesses. In our de-identified prototype, all users have an ID rather than a name displayed. Since you

were accessed by 319 distinct users over the course of your 5 encounters, the access record is very long and

contains a large number of unfamiliar user positions, such as “UR/QA 1”.

According to the requirements of the U.S. Department of Health and Human Services, your record

ICD-9 Code Description
153.9 Malignant neoplasm of colon, unspecified site
197.0 Secondary malignant neoplasm of lung
197.7 Secondary malignant neoplasm of liver

Table 8.1: Summary of the diagnoses for patient 35347

41

Figure 8.1: The MAI welcome page

displays the date and time of access, the name of the users who made the access, and the user’s role which

is used in lieu of a reason or action taken on the data.

Additionally there is a button reading “Explain Positions” at the top of the page. When you press it,

each user has a small question mark icon next to their name. When you hover over the icon for the user

with position UR/QA 1, a tool-tip text appears reading,

This role has a 80.0% chance of accessing your diagnosis, 197.0

This role has a 82.0% chance of accessing your diagnosis, 153.9

This role has a 93.8% chance of accessing your diagnosis, 197.7

An example of this functionality is seen in Figure 8.2.

You begin to feel a lot better about seeing strange positions that you previously weren’t aware of.

However, since you had so many accesses to your record, you decide to call your healthcare provider and

demand that they audit your record for any anomalous behavior.

8.2 Administrator View

The security administrator at your provider receives your request for an audit and proceeds to check your

record through the MAI system. When she logs in with your patient id, she sees the same access log that

you did when you logged in. However, she has several modules available to her that you did not have access

to. In this demonstration, these are the Notes and Orders module and the CADS module. A screenshot of

the administrator page can be found in Figure 8.3.

42

Figure 8.2: The PositionExplainer module at work

Figure 8.3: The MAI administrator display page

43

Figure 8.4: A lightly-colored user affected by the CADS module

The administrator begins examining the record by selecting the CADS module, which colors a few users

in various shades of red and places a question mark icon next to the names of those users. The administrator

hovers her mouse over the icon for user 6679, who is shaded in a faint red, like in Figure 8.4. The tool-tip

text appears, displaying

User 6679 has a high social network-derived score

which indicates that CADS has deemed user 6679 suspicious based on its configuration parameters. She

decides that there is no need for alarm yet, since the CADS module was configured to begin shading users

red when their deviations are outside of two standard deviations from the mean. She continues searching

for users who have a higher alert level.

Before long, she discovers user 6736, who has a significantly deeper red color than the previous user, as

seen in Figure 8.5. She begins to get suspicious of this user, so she enables the Notes and Orders module,

which colors a large number of the accesses green, indicating that they are not likely to be suspicious.

User 6736 also has a number of his or her accesses turn green at that point, but the red color enabled

by CADS remains. She also enables the Position Explainer module which gives statistics about the user-

diagnosis relationship, as in Figure 8.6. The Position Explainer module says that the greatest chance of user

44

Figure 8.5: A darkly-colored user affected by the CADS module

6736’s role accessing a patient with this diagnosis is 75%. This means that users with the same role as user

6736 accessed patients having one of the same diagnoses as the patient 3 times out of 4. Since one of the

accesses is colored green it is quite possible that the user is doing legitimate work, but he or she also makes

several accesses that are not accompanied by notes or orders. The administrator decides that she should

probably take a look into the accesses made by user 6736 to other patients to see if any other suspicious

behavior sticks out.

8.3 Use Case Discussion

By utilizing the MAI framework and its ever-growing collection of analytical modules, the hospital was able

to save a great deal of time, money, and talent in order to comply with the regulations of the Department

of Health and Human services. In this example, the MAI system offered the following benefits:

• First, the MAI system automatically compiles an access record ready for presentation to the patient

which eliminates time spent generating the data by specialists.

• Secondly, the patient is presented with options for explaining the accesses that are made to his or her

45

Figure 8.6: A combination of CADS, Notes and Orders, and Position Explainer modules

record. This behavior is likely to prevent patients from becoming confused by, or concerned about,

who makes accesses to their record.

• Thirdly, a significant amount of manpower was saved in replying to a patient’s request for an audit by

leveraging existing anomaly detection techniques in a user-friendly way. Although providers are not

required to respond to patient audit requests, doing so is good for keeping the patient satisfied and

ensuring the patient returns to the same provider. Furthermore, it has the potential to save on legal

liabilities if a HIPAA violation is discovered.

46

Chapter 9

Discussion

In this text we have outlined the need for an extensible system capable of analyzing access log data in

an electronic health record environment and explored the reality of building such a system. Due to the

nature of the legal and regulatory systems surrounding the United States healthcare industry, it has become

necessary to build a system like MAI in order to satisfy the needs of patients and healthcare providers alike.

MAI was designed with the goal in mind of easing the burden of implementation of these regulations while

simultaneously leveraging the wealth of technical knowledge available in the academic literature.

9.1 Affects on Healthcare Information Technology

We hope that this study reinforces the notion that implementation of the access report requirements in

the Department of Health and Human Services’ Notice of Proposed Rulemaking are quite tractable. When

the Office of Civil Rights called for comments on the NPRM from stakeholders, it was largely endorsed

and applauded for its advancement of patient rights [26][25][4]. However, these same sources were doubtful

about the capabilities of healthcare organizations to produce the access reports due to the administrative

overhead required as well as the cost of implementation. We have demonstrated that compiling the access

reports in a user-friendly manner is tractable in real-time for an audit log of over six million entries, and we

have demonstrated that the state of the art is sufficiently advanced to go further than the requirements of

the NPRM in extracting explanations for these accesses. Our prototype allows patients and administrators

to be able to easily obtain information and make judgements about a complex system without the need to

understand the implementation details.

The access records that HHS has called for are a valuable step toward giving patients control over the

data contained within their health records. We would like to see technology driving the way to progress the

way it has been demonstrated in the HITECH bill and we hope that this work stimulates more work in that

direction.

47

9.2 Limitations and Future Work

We believe that MAI is sufficiently extensible to facilitate new detection algorithms in the future which

discover more data types than simply an anomaly score or a description text. We also see great potential in

the flexibility of the Module API for allowing new modules to be developed in emerging technologies.

The prototype described in these pages is fairly limited in its power to address the concerns of its users,

mostly due to the lack of analytical modules that are implemented so far. Furthermore, there is a much

broader limitation to this project which lies in the inherent complexity of EHR systems and our lack of

understanding of it. There are no perfect algorithms for understanding the accesses that are made to a

patient’s record and the anomaly detection tools that are developped by the machine learning community

are always somewhat handicapped by a trade-off between sensitivity and specificity.

We already have two other modules being implemented in the MAI system which will further improve

its analytical capabilities. The first, called PFADS, analyzes the flow of patients through an organization

according to the access records and constructs a model for a typical patient of that type [30]. A new patient

can then be compared to the existing patient flows and if an access deviates from the expected model, that

access can be flagged as anomalous. The second module in development, SNAD, constructs a social network

similar to that in CADS but performs better at deeming specific actions as anomalous, rather than aggregate

behavior like CADS [8].

We also have plans to include more information for the Patient View, such as utilizing social networks

for the opposite purpose as in CADS. Rather than detecting when a user is anomalous within a community,

we could use these networks to defined when a user is considered normal within his or her network based on

criteria such as who he or she works with. If a patient regularly interacts with User A and User A regularly

works with User B, it should not necessarily be suspicious if User B accesses the patient’s record even if it

is unusual for his role.

48

References

[1] Emoat: Extensible medical open audit toolkit. http://hiplab.mc.vanderbilt.edu/projects/

emoat/.

[2] Fair warning. http://www.fairwarning.com/.

[3] P2sentinel. https://store.cerner.com/items/1552.

[4] American Hospital Association (AHA). Remark on nprm. http://www.aha.org/advocacy-issues/

letter/2011/110801-cl-hipaaprivruleacctdiscl.pdf.

[5] American Medical Association. Hipaa 101: How it started and whats next. http://www.ama-assn.

org/ama1/pub/upload/mm/399/hipaa-101-fact-sheet.pdf, March 2011.

[6] Twila Brase. Policy insights. Citizens’ Council for Health Freedom - Government Health Surveillance,
1, July 2012.

[7] You Chen and Bradley Malin. Detection of anomalous insiders in collaborative environments via re-
lational analysis of access logs. In Proceedings of the first ACM conference on Data and application
security and privacy, pages 63–74. ACM, 2011.

[8] You Chen, Steve Nyemba, Wen Zhang, and Bradley Malin. Leveraging social networks to detect
anomalous insider actions in collaborative environments. In Intelligence and Security Informatics (ISI),
2011 IEEE International Conference on, pages 119–124. IEEE, 2011.

[9] Daniel Fabbri and Kristen Lefevre. Explaining accesses to electronic medical records using diagnosis in-
formation. Journal of the American Medical Informatics Association, Special Focus Issue on Biomedical
Data Privacy, 2012.

[10] Centers for Disease Control and Prevention. Meaningful use - introduction. http://www.cdc.gov/

ehrmeaningfuluse/introduction.html.

[11] Centers for Medicare and Medicaid Services. Meaningful use. http://www.cms.gov/

Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Meaningful_Use.html.

[12] Centers for Medicare and Medicaid Services. Taxonomy. http://www.cms.gov/Medicare/

Provider-Enrollment-and-Certification/MedicareProviderSupEnroll/Taxonomy.html.

[13] Centers for Medicare and Medicaid Services. Stage 1 vs. stage 2 comparison table for eligible hospitals
and cahs. http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/
Downloads/Stage1vsStage2CompTablesforHospitals.pdf, August 2012.

[14] Centers for Medicare and Medicaid Services. Stage 2 overview tipsheet. http://www.cms.gov/

Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Downloads/Stage2Overview_

Tipsheet.pdf, August 2012.

[15] Robert Wood Johnson Foundation, George Washington University Medical Center, and Institute for
Health Policy. Health information technology in the united states: The information base for progress.
http://www.policyarchive.org/handle/10207/bitstreams/21618.pdf, February 2008.

49

[16] Carl A. Gunter, David M. Liebovitz, and Bradley Malin. Experience-based access management: A
life-cycle framework for identity and access management systems. IEEE Security & Privacy Magazine,
9(5), September/October 2011.

[17] Health information technology for economic and clinical health act, subtitle d, § 13402.

[18] HealthIT.gov. Benefits of ehrs: Health care quality & convenience. http://www.healthit.gov/

providers-professionals/health-care-quality-convenience.

[19] HealthIT.gov. Benefits of ehrs: Improved care coordination. http://www.healthit.gov/

providers-professionals/improved-care-coordination.

[20] HealthIT.gov. Benefits of ehrs: Improved diagnostics & patient outcomes. http://www.healthit.gov/
providers-professionals/improved-diagnostics-patient-outcomes.

[21] Eric Jamoom, Vaishali Patel, Jennifer King, and Michael Furukawa. National perceptions of ehr adop-
tion: Barriers, impacts, and federal policies, August 2012.

[22] Department of Health and Human Services. Notice of proposed rulemaking. Federal Register, 76(104),
2011.

[23] United States Department of Health & Human Services. Hitech act enforcement in-
terim final rule. http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/

hitechenforcementifr.html.

[24] The Department of Health and Human Services. Summary of the hipaa privacy rule. http://www.hhs.
gov/ocr/privacy/hipaa/understanding/summary/index.html.

[25] American College of Physicians (ACP). Remark on nprm. http://www.acponline.org/advocacy/

where_we_stand/health_information_technology/hipaa_disclosures.pdf.

[26] American College of Surgeons (ACS). Remark on nprm. http://www.facs.org/ahp/

hipaa-acctletter.pdf.

[27] World Health Organization. International classification of diseases (icd). http://www.who.int/

classifications/icd/en/.

[28] World Wide Web Consortium (W3C). Extensible markup language (xml) 1.0. http://www.w3.org/

TR/xml/.

[29] Mark Weiner. Implications of the health insurance portability and accountability act of 1996. http:

//www.cs.princeton.edu/courses/archive/spr02/cs495/HIPAA-princeton.pdf, February 2002.

[30] He Zhang, Sanjay Mehrotra, David Liebovitz, Bradley Malin, and Carl A. Gunter. A patient flow model
for scoring anomalies in access logs. Technical report, Northwestern University, 2011.

50

Appendix A

Database Schema

A.1 Schema Diagram

Figure A.1: Entity Relationship Diagram

51

A.2 Table Descriptions

access

Field Type Reference Description

access id int(10) UN PK AI Primary Key

enc uniq id int(10) UN encounter Reference to the encounter of

this access

pat loc id int(10) UN location Reference to the location within

the hospital

patient service id int(10) UN patient service Reference to the patient’s ser-

vice ID

user id int(10) UN user Reference to the user making

the access

reason id int(10) UN reason Reference to the user-supplied

reason

user access dttm datetime Date and time of access

user note cnt int(11) Number of notes accessed

user order cnt int(11) Number of orders accessed

department

Field Type Reference Description

dept id int(10) UN PK AI Primary Key

dept desc text Name of the department

encounter

Each access belongs to an encounter, which is essentially a patient’s time at the hospital from check-in until discharge.

52

Field Type Reference Description

enc uniq id int(10) UN PK AI Primary Key

patient id int(10) UN patient Reference to the patient for this

encounter.

enc end dttm datetime The end date and time of the

encounter.

enc id int(10) UN The encounter pseudonym gen-

erated by NMH

enc start dttm datetime The start date and time of the

encounter.

icd9 data

This table encapsulates an ICD-9 code. The code and type together form the primary key.

Field Type Reference Description

code varchar(45) PK The ICD-9 code itself

type varchar(45) PK Either diagnosis or procedure

desc text A textual description of the code

icd9 grouping

This table handles the hierarchical structure of the ICD-9 codes.

Field Type Reference Description

parent id int(10) UN icd9 grouping The higher-level ICD-9 code.

grouping id int(10) UN PK AI Primary Key

first code varchar(45) For higher-level groups, the

starting code

last code varchar(45) icd9 data For higher-level groups, the end-

ing code

desc text

location

This table holds the locations within NMH.

Field Type Reference Description

loc desc text The name of the location

loc id int(10) UN PK AI Primary Key

53

patient

This table encapsulates all the relevant patient information available in the de-identified data set.

Field Type Reference Description

pat zip int(10) UN ZIP code, de-identified to the

first three digits.

pat age int(10) The patient’s age

pat pseudonym double UN The original NMH patient

pseudonym

patient id int(10) UN PK AI Primary Key

patient service

This table holds the services into which a patient can be placed. Examples include “Hematology” and “Transplant

Surgery.”

Field Type Reference Description

patient service desc text The textual description, as

above

patient service id int(10) UN PK AI Primary Key

problem

Field Type Reference Description

diag dttm datetime The date and time of diagnosis

prob id int(10) UN PK AI Primary Key

icd9 code varchar(45) icd9 data The ICD-9 code for this problem

patient id int(10) UN patient The patient affected by the problem

reason

A reason for access, usually closely resembling the user role.

Field Type Reference Description

reason id int(10) UN PK AI Primary Key

reason desc text Textual description of the reason

role

Field Type Reference Description

role desc text Name of the role

role id int(10) UN PK AI Primary Key

54

user

Field Type Reference Description

user pseudonym int(10) UN Original NMH user pseudonym

user id int(10) UN PK AI Primary Key

role id int(10) UN role A reference to the user’s role

user dept list

Maintains a list of departments for each user.

Field Type Reference Description

dept id int(10) UN department The department linked to the user

user id int(10) UN user The user belonging to the department

dept list id int(10) UN PK AI Primary Key

55

