Reasoning about Metamodeling with Formal
Specifications and Automatic Proofs

Ethan K. Jackson!, Tihamer Levendovszky?, and Daniel Balasubramanian?

"Microsoft Research, Redmond, WA and *Vanderbilt University, Nashville, TN
ejackson@microsoft.com
{tihamer, daniel}@isis.vanderbilt.edu

Abstract. Metamodeling is foundational to many modeling frameworks,
and so it is important to formalize and reason about it. Ideally, correct-
ness proofs and test-case generation on the metamodeling framework
should be automatic. However, it has yet to be shown that extensive au-
tomated reasoning on metamodeling frameworks can be achieved. In this
paper we present one approach to this problem: Metamodeling frame-
works are specified modularly using algebraic data types and constraint
logic programming (CLP). Proofs and test-case generation are encoded
as CLP satisfiability problems and automatically solved.

1 Introduction

Metamodeling is foundational to many modeling frameworks, and so it is impor-
tant to formalize it properly. Ideally, a formalization should enable automated
reasoning by generating test cases, proving correctness of the meta-interpreter,
and proving correctness of editing operations. However, the state-of-the-art is
somewhat less than ideal. On one hand, there has been a general consensus
that the Meta-Object Facility (MOF) standard is under-formalized and deserves
careful attention [I2I8I45]. On the other hand, attempts at full formalization
of MOF/MOF-alternatives have not yet enabled extensive automated reasoning
on metamodeling frameworks. (We give a summary of existing results shortly.)

In this paper we present a new approach to formalizing and reasoning on
metamodeling frameworks. The core of our approach uses algebraic data types
(ADTs) and constraint logic programming (CLP) for formal specifications. We
modularize these specifications so they mirror the key components of metamod-
eling frameworks: (1) A model store for representing models, metamodels, and
conformance. (2) A set of model editing operations. (3) A meta-interpreter for
promoting model-level elements to meta-level elements. We encode proof goals
as instances of CLP satisfiability problems, and use our FORMULA framework
to solve these instances [6]. The result is a concise formal specification whose
structure resembles the tool architecture, but allows constructive automated
reasoning to perform correctness proofs and test case generation.

Our contributions are: First, we develop a complete specification of a simple
metamodeling framework based on typed graphs [7]. This gives a blueprint for

specifying more complicated frameworks. Second, We prove that our choice of
editing operations preserves model conformance. We prove metacircularity by
automatically constructing a meta-metamodel. These results have the interest-
ing side-effect that it is unnecessary to write a bootstrapping meta-metamodel; it
falls out of the proof. Third, we relate these results to a MOF-like metamodeling
framework with richer conformance constraints, such as acyclicity and multiplic-
ity constraints. These results are obtained using our FORMULA specification and
analysis framework.

2 Related Work

Metamodeling continues to be an extensively researched topic [8] with many
approaches to formalization. A few representatives are: The Metamodeling Lan-
guage Calculus (MML) based on ¢-calculus [I]. The graph-theoretic approaches
of KMS3 [2] and VPM [3]. The work of [4] provides a rich set-theoretic setting for
metamodeling. MOMENTZ2 uses membership equational logic and term rewrit-
ing as a formal foundation [5]. Though formal, many approaches support limited
automated reasoning on the metamodeling framework.

In this paper we investigate the power of automated formal methods to rea-
son on metamodeling frameworks. Our tool supports expressive specifications
corresponding to fizpoint logic (FPL) over theories [9], and provides a finite
model finder for automated reasoning. Other automated techniques have been
applied to metamodeling. The work of [5] uses MAUDE [10] to check meta-
model/model conformance and linear temporal logic (LTL) properties via term
rewriting systems. A proof is a reduction of an input term to a term with no
further reductions. Model finding is not generally supported by this approach.
Related to this, [II] describes translators from VPM-style specifications into
explicit/symbolic state model checkers, though not necessarily for the purpose
of reasoning on metamodeling frameworks.

The work of [I2] provides a translation from UML and a subset of OCL into
the finite model finder Alloy [13]. Alloy is perhaps the closest tool to FORMULA;
for an extensive comparison see [6]. Alternative approaches avoid solving alto-
gether, in favor of abstracting to graph grammars [I4], or interactive theorem
provers [I5]. Yet, model finders continue to be effective for automative reasoning,
even in areas such as software product lines [16].

These results are based on preliminary work we presented in [I7]. To our
knowledge, this is the first time such automated proofs have been shown for a
metamodeling framework.

3 Introduction to CLP and Satisfiability

Constraint Logic programming (CLP) provides a powerful approach to writing
formal specifications. First, a logic program IT can be directly (i.e. in polynomial-
time) translated into first-order logic (FOL) according to its Clark Completion.
Following the notation of [I8], we refer to this translation as IT*. Second, logic

programs are executable, allowing programmatic reasoning to be applied while
devising specifications. This form of reasoning is harder to obtain when directly
writing FOL. Actually, an even stronger property holds: The execution of a logic
program proves theorems about its logical semantics. If g is a quantifier-free
formula over the relations computed by II, then g can be decided by executing
I1. (3¢ denotes the existential closure of g.) The formula g is called a goal.

Consider the following program, which computes paths and cycles occurring
in a directed graph.

Ezample 1 (Cycles).

. path(x, y) :- e(x, y).
Hcycles = path(x, Z) - e(x, y)! path(y, Z)'
inCycle(x) :- path(x, x).

The symbols e(), path(,), and inCycle() are user defined relations. Each logic
programming rule behaves like a universally quantified implication. Whenever
the relations on the right-hand side of a rule hold for some substitution of the
variables, then the left-hand side holds for that same substitution. A logic pro-
gram is stronger than a set of implications, because it only entails theorems that
can be explained by repeated applications of rules. Derivations must begin with
facts, which are rules whose right-hand side is true. Formally, this means: (1) IT*
contains additional formulas to constrain the implications, and (2) the intended
interpretation of II* is the smallest set of relations satisfying IT*. In this way,
Example [1| encodes the transitive closure of a directed graph. (An alternative
formalization for CLP is obtained by extending FOL with fixpoint operators [9].)

The program I1;y¢.s is not very interesting because it contains no facts. The
least interpretation of this program assigns e = path = inCycle = (); it is called
the least Herbrand model and denoted Im(IT*). A goal g holds for a program
IT if g evaluates to true under the least Herbrand model; denoted:

Im(IT*) & 3g.

In particular, lm(Ué‘ycleS) Fe 3z inCycle(x). Suppose the program is extended
with the fact e(1, 1), then exactly the additional facts path(1,1) and inCycle(1)
are deducible and the goal is satisfied. Most LP languages are concerned with
efficient rule application to prove a goal, either by working backwards from a
goal to facts or forwards from facts to a goal.

3.1 CLP Satisfiability

We will generate automatic proofs from formal specifications by solving CLP
satisfiability problems. Satisfiability is different from checking goal satisfaction;
it is to determine if a program can be extended by a finite set of facts so that a
goal is satisfied. As the previous example shows, this problem cannot be solved by
simply running a logic program. It requires searching through (infinitely) many
possible extensions, which we achieve by efficient forward symbolic execution of

a logic program into the state-of-the-art satisfiability modulo theories (SMT)
solver Z3 [19]. As a result, specifications can include variables ranging over
infinite domains and rich data types. Nonetheless, the method is constructive;
it returns extensions of the program witnessing goal satisfaction.

Let U be a (possibly infinite) set called a universe and r an n-ary relation
symbol. Then a (finite) interpretation of r, written v/, is a (finite) subset of U™.

We write r(t) as a shorthand for r applied to elements ¢1,...,t, of U.
Definition 1 (CLP Satisfiability). Given:

1. A program IT with relation symbols R = {ry,ra,...,mn},
2. R, C R a subset of the program relations, called the primitive relations.
3. A quantifer-free goal g over the program relations.

Then find a finite interpretation Ré for primaitive relations such that:
im((IT U RLY") 1= 3g. (1)

The program II U R;) s obtained by extending II with a fact r(?) whenever
RL E=r(t).

The program can only be extended by primitive relations Rp. The contents
of RL are the facts that, when added to the program, cause the goal to be
satisfied. We write S(I1, Ry, g) to denote an instance of CLP satisfiability and
RL € S(II, R,, g) to denote an interpretation satisfying the problem. In a very
technical sense, we refer to R{; as a model of S. However, such interpretations
can also represent instances of an abstraction, allowing them to serve as models
in a more general sense. Thus, we may use the symbol M when more intuitive.

3.2 Blueprint of a Metamodeling Framework

We formalize metamodeling frameworks using CLP and CLP satisfiability ac-
cording to the following blueprint:

1. Model Store. The model store encodes the set of all conforming meta-
model/model pairs. It captures the semantics of metamodel conformance.
Interesting instances of metamodel/model pairs can be constructed by solv-
ing satisfiability problems. We present a two-level model store, though an
arbitrary number of meta-layers could be specified.

2. Editing Operations. These are transformations for editing model-level el-
ements through creation and deletion. These transformations are also defined
over the model store. By formalizing editors we can generate test cases where
editing breaks model conformance. For a simple metamodeling framework
we can choose model editors so that conformance is always maintained.

3. Meta-interpreter. The meta-interpreter is a transformation promoting
model-level elements to meta-level elements. This transformation is defined
over the model store. We say a framework is metacircular if there exists an
input model that is promoted to its own metamodel by the meta-interpreter.
Again, this property can be rephrased as a satisfiability problem and meta-
metamodels are constructed witnessing this property.

4 Metamodeling by Typed Graphs

Typed graphs have been studied extensively as representations for (meta-) mod-
els, especially by the model transformation community [7]. For example, they
are the basis for KM3 metamodeling notation employed by the ATLAS trans-
formation language, and can be used as a more basic foundation for MOF [2].
They are simple to define and easy to understand, so we use them to illustrate
a complete metamodeling framework.

4.1 Typed Graphs and the Model Store

Definition 2 (Directed Graph). A directed graph is a quadruple
G = (V,E, src,dst) where V and E are sets; src: E—V anddst : E — V.

Definition 3 (Typed Graph). A typed graph is a quadruple T = (G, H, T, Te)
where G and H are directed graphs; 17, : Vg — Vq and 7. : Eg — E¢.

The graph G acts like a metamodel providing a set of node types and edge
typesﬂ Graph H is an instance model referencing these types. The type of each
vertex v is 7,(v) and edge e is T.(e). A model H conforms to the metamodel G
if the edges and vertices of H are connected according to their types:

. sreg(te(e)) = mo(srep(e)) A
conforms(T) = Ve € Ey (dstg(Te(e)) _ Tv(dstg(e))) . (2)

Fixing the universe U of edge/vertex labels yields a set of all possible conforming
metamodel/model pairs. We call this set the model store:

Store(U) = {T | conforms(T) AN Vg,Eq,Vu,Ey CU}. (3)

4.2 Specifying the Model Store with ADTs and CLP

Figure [I| shows an equivalent specification of the model store in FORMULA. This
specification is wrapped in a domain block, which delimits a domain-specific
abstraction. As mentioned earlier, FORMULA directly supports algebraic data
types and these are used to encode user defined relations. For example, Line 3
declares a data type constructor MetaNode() for instantiating meta-level nodes
(V). This constructor produces MetaNode records, each of which has a field
called typename of type String. Similarly, MetaFEdge(,,) constructs elements of
E¢ using MetaNodes as endpoints (Line 5). The Node and Edge constructors
instantiate model-level elements (graph H), and the fields called type encode T,
and T,.

Due to the flexibility of ADTSs, it is unnecessary to distinguish between
data type constructors and user-defined relation symbols. Instead, every pro-
gram computes two standard unary program relations, r, and 74, over records.

1 Our definition differs from others as we allow edges to also acts as types.

1. domain ModelStore

2. {

3. MetaNode ::= (typename: String).

4, [Closed(sre, dst)]|Unique(typename —> sre, dst)]

5. MetaEdge := (typename: String, src: MetaNode, dst: MetaNode).
6. [Closed(type)][Unique(name —> type)]

7. Node = (name: String, type: MetaNode).

8. [Closed(sre, dst, type)]||Unique(name —> src, dst, type)]

9. Edge ::= (name: String, src: Node, dst: Node, type: MetaEdge).
10.

11. badSrc :=Edge(-, src, dst, t), t.src = src.type.

12. badDst :=Edge(., src, dst, t), t.dst != dst.type.

13. conforms :=!badSrc & !badDst.

14. }

Fig. 1. FORMULA specification of a model store containing typed graphs.

The primitive relation 7, contains only records built with primitive constructors,
and the derived relation r4 contains only records built with derived constructors.
Primitive constructors can be used to extend a program in order to solve a sat-
isfiability problem; derived constructors cannot. Primitive constructors always
begin with a capital letter. Every FORMULA domain contains a special nullary
derived constructor called conforms. The models of a domain D are those ex-
tensions of II by r, where conforms is derivable:

models(D) = {’I‘é | rII) € S(ITp,{rp}, conforms)}. (4)

FORMULA provides special syntax for expressing domain models, as shown in
Figure 2] The declaration model M of D is a claim that the code-to-follow gives
an interpretation r5 € models(D). This claim is checked by the compiler. Recall
that T‘II] is just a set of records, thus a model block is just a set of records. The
StateDiagram model in Figure [2|is an instance of the model store representing

a small state diagram over the meta-types State and Transition.

The constraints describing typed graph conformance are expressed in Lines
11 - 13 of Figure [I} FORMULA also provides special syntax for rules where the
left-hand side is a nullary constructor. We refer to these as queries and use the
query definition operator (:=) for query definitions. Intuitively, a query behaves
like a propositional variable that is true if and only if the right-hand side of
the definition is true for some substitution. As a convenience, FORMULA allows
queries to be treated like propositional variables when they appear in other query
definitions. For example, the badSrc query in Line 11 of Figure [I] detects if the
source of a model-level edge has been connected improperly. It corresponds to
the following formula in I7*:

badSrc € rq < Edge(n, src,dst, t) € 1 getsrc(t) # getiype(sre). (5)

1. model StateDiagram of ModelStore

2. |

3. MetaNode(“State”)

4. MetaEdge(“Transition”, dst

5. MetaNode(“State”), State |sc [___[Transition]
6. MetaNode(“State”)) B
7. Node(“S1”, MetaNode(“State”)) inst.ofl instoof__ mst of

8. Node(“S2”, MetaNode(“State”)) 3 4

9. Edge(“T1”, :

10. Node(“S1”, MetaNode(“State”)) @ @
11. Node(“S2”, MetaNode(“State”)) T1

12. MetaEdge(“Transition”,

13. MetaNode(“State”),

14. MetaNode(“State”)))

15. }

Fig. 2. A FORMULA model from the model store that encodes a state diagram.

where get,() extracts the field named z. Similarly, the conforms query is ex-
pressed as:

conforms € rq < badSrc ¢ vy A badDst & T4 N Peompiler- (6)

The sub-formula @compiter holds additional conformance constraints that are
automatically added by the compiler. These extra constraints may appear due to
inheritance of constraints through the module system or due to shorthands. One
such shorthand is the Closed annotation (Line 4), which requires the src/dst
fields of MetaEdge to contain only meta-nodes declared at the top level. The
Unique annotation requires all records with identical fields on the left of the
arrow (—>) to have identical fields on the right of the arrow. These shorthands
encompass many common constraints, though it always possible to express the
same constraints without using them.

In summary, the FORMULA specification encodes a typed graph model store
using ADTs and CLP. The set of all conforming metamodel/models pairs is
characterized by the satisfiability problem rmodels(ModelStore). Therefore, we
can use automated techniques to prove properties about the model store. We
shall illustrate this in the later sections. But first, our typed graph framework
requires a few operations for editing models: Delete node, create node, delete
edge, and create edge. In the next sections we show how to specify these opera-
tions, illustrating that CLP satisfiability can also be used to reason about model
transformations.

5 Encoding Model Transformations

Model transformations are encoded as logic programs where data types distin-
guish the inputs and outputs of the transformation. For example:

Ezample 2 (Filter MetaNodes).
IItijter = out.MetaNode(x) :- in.MetaNode(x).

The constructor in. MetaNode() stands for meta-node primitives at the input of
the transformation. Similarly, out. MetaNode() stands for meta-node primitives
on the output of the transformation. A transformation is executed by providing
an interpretation rII) for the input primitives, and then computing the output
primitives according to the logic program:

transform (11, 7’{,) ={f(t) | lm((HU?"é)*) = f(t) ANisOut(f)} (7)

where the predicate isOut(f) tests if constructor f is an output primitive.

In order to ease the use of transformations we introduce the renaming op-
erator as. Let II as X return a new program ITx obtained by replacing every
occurrence of a function symbol f with X.f in II. This also applies to the type
declarations in IT. Similarly, r5, as X replaces every f-record with an equiva-
lent X.f record. Thus, the program II ;s can be used to transform the model
StateDiagram in Figure [2 as follows:

transform (I tizer, StateDiagram as in) = {out.MetaNode(“State”)}.

The filter transformation only copies meta-nodes to the output, so it effectively
deletes all other information from the output.

Satisfiability can be used to reason about model transformations. The ap-
proach is to compose renamed versions of input/output domains with the trans-
formation in order to reason about its impact on domain constraints. For exam-
ple, we may wish to know if there exists a conforming instance from the model
store that is no longer conforming after filter is applied.

Ezample 3 (Property Conformance-Breaking).

I - IIjier U (ModelStore as in) U (ModelStore as out) U
B~ confBreaking := in.conforms & lout.conforms.

The problem S(II¢g, {rp}, confBreaking) has a solution if and only if there exists

such an input to the transformation. (Note that r, only contains input primitives;

output primitives are placed in r4). In this case, the problem is unsatisfiable, so

there is no such input to the transformation.

5.1 Editing By Transformations

The FORMULA module system simplifies the specification of model transforma-
tions, as shown in Figure[3] Line 1 declares the transformation called CreateNode,
which requires two parameters called newName and newType. Parameters are
extra pieces of information provided to the transformation, in addition to the
input models. These parameters give the name and type of the node to be added.
Line 2 identifies the inputs/outputs of the transformation by two lists of renamed

domains. The compiler automatically composes the transformation logic (Lines
4 - 10) with the renamed input/output domains.

Lines 4 - 7 of the transformation copy the input metamodel/model to the
output of the transformation. These rules are particularly simple due to renam-
ing inference by the compiler. For example, the right-hand side of the rule in
Line 5 has a variable called src¢ that must be of type in.MetaNode. However,
the constructor out.MetaNode on the left-hand side expects src to be of type
out.MetaNode. The compiler detects this and applies renaming to src on the left-
hand side. In addition to copying, Line 8 adds a new node called newName to the
output if such a node does not already exist. Line 10 specifies the conformance-
breaking property.

The CreateNode transformation has all the context needed for proving prop-
erties about its behavior. The solver can be used to find an instance of the inputs
and parameters causing conformance to be broken. Because there are many de-
grees of freedom in this problem, it is useful to give the solver some guidance. We
call this guidance a partial model; it is roughly a lower bound on the structure
of ré. Figure [4| shows a partial model containing three applications of each prim-
itive constructor to fresh variables (denoted _). This partial model requires the
solver to return models with at least one (meta-)node/edge each. In addition,
the free variables cause the solver to eagerly search for larger models. The size
and structure of ré may be further expanded during the search process, beyond
the contents of the partial model. In order to check the conformance-breaking
property, we issue the following command to FORMULA:

solve CreateNode <_,_> Plnst confBreaking

This allows the solver to search for any parameter values that break conformance
when applied to some instance of the model store. In this case, the problem is
satisfiable because an undeclared meta-node may be provided as the newType
parameter. (This violates the Closed constraint in Figure Line 6.) Figure
shows an example of the FORMULA output, which consists of a model and
parameter valuations solving the satisfiability problem.

1. transform CreateNode <newName : String, newType : in.MetaNode>
2. from ModelStore as in to ModelStore as out

3 {

4. out.MetaNode(typename) - in.MetaNode(typename).

5. out.MetaEdge(typename, src, dst) :- in.MetaEdge(typename, src, dst).
6 out.Node(name, type) :- in.Node(name, type).

7 out.Edge(name, src, dst, type) - in.Edge(name, src, dst, type).
8 out.Node(newName, newType) :- fail in.Node(newName, _).

9.

10. confBreaking :=in.conforms & lout.conforms.

1. }

Fig. 3. A CreateNode transformation in FORMULA.

partial model PInst of ModelStore

{
MetaNode(_) MetaNode(-) MetaNode(_)
MetaEdge(, -, -) MetaEdge(-, -, -) MetaEdge(-, -, -)
Node(_, -) Node(, -) Node(-, -)
Edge(77 =y = 7) Edge(*7 =) = 7) Edge(*7 =) = 7)

}

No ok wbhe

Fig. 4. Partial instance of 7";; to guide the solver.

model Proof of ModelStore
{
MetaNode(“A”)
MetaEdge(“B”, MetaNode(“A”), MetaNode(“A”))
Node(“C”, MetaNode(“A”))
Edge(“D”, Node(“C”, MetaNode(“A”)), Node(“C”, MetaNode(“A”)),
MetaEdge(“B”, MetaNode(“A”), MetaNode(“A”)))
}

newName = “E”, newType = in.MetaNode(“F”)

©oNDORwbE

Fig. 5. An automatically generated witness that CreateNode is conformance breaking.

5.2 Conformance-Preserving Edits

The typed graph formalism is simple enough that we can define editing opera-
tions which never break conformance. Specifically, Create Node should only create
a node if there is no other node with same name and the meta-node exists. Thus,
Line 8 is replaced by:

out.Node(newName, newType) :- in.MetaNode(n), n = newType.typename,
fail in.Node(newName, _).

Similar rules hold for CreateEdge. DeleteNode must also delete all incident edges.
See http://research.microsoft.com/formulal for the complete specification
of these transformations.

In general it is undecidable whether or not there exists a finite interpretation
satisfying a CLP satisfiability problem. Therefore, the solver can only guarantee
the absence of solutions up to some size of ré. This is a well-known problem when
using constructive methods to generate proofs. Fortunately, there is a well-known
solution: Provide an inductive argument that generalizes the absence of solutions
to interpretations of arbitrary size. The advantage of such inductive arguments
is that they can be rather generic and reusable across problem instances.

For example, the FORMULA solver can be used to show that for all conforming
inputs ré where |7"£| < k, then no editing operation breaks conformance. These
results can be paired with a theorem showing that all other cases can be decom-
posed into these small cases. First, a term homomorphism ¢ is a function from
records to records with the property that o(f(t1,...,tn)) = f(p(t1),. .., @(tn)).

http://research.microsoft.com/formula

Let the base cases B be a finite set of input interpretations, and 7(z)(M) denote

an editing operation with parameters = applied to model (input interpretation)
M.

Theorem 1 (Decomposition Theorem). The transformation 7(z)(M) is
equivalent to transforming a relabeled instance of B and combining it with a
subset of M. In symbols:

¥M,3 3M,M", o T<§>(M>=M’U9”1<T<¢<5>>(w<M”>>> ®)

such that:
M=MuUM" and 3IBeB o(M") = B. (9)

1

Note, p(M) is ¢ applied to every term in M. The function p~1 is the inverse

image of .

This theorem formalizes the fact that an edit operation acts locally on an
input. Reasoning on the set of base cases B is sufficient, because every input can
be described as a local edit on a base case. In fact, B need not be constructed
manually; only an upper bound k on the largest interpretation in B needs to be
constructed. While the proof of this theorem is not automatic, its form is not
specific to this example so it provides a general proof strategy.

6 The Meta-interpreter

A meta-interpreter is a transformation promoting model-level elements to meta-
level elements. When combined with editing operations, it provides a way to
build new abstractions using the operations provided by the framework.

Figure[f]shows one such meta-interpreter in FORMULA; there are several note-
worthy aspects. First, the promotion is determined by arbitrary and hard-coded
type names. Lines 3, 4 promote a model-level node to a meta-node only if the
node has type Class. Similarly, the promotion of edges to meta-edges only occurs
if an edge’s type is Assoc and its end-points are Classes (Lines 5 - 11). Second,
the choice of type names is unrelated to the formalization of the model store.
The strings “Class” and “Assoc” are convenient, but arbitrary, monikers. Thus,
the model store may have a simpler formalization than the concepts exposed
by the meta-interpreter (though perhaps less convenient). Certainly, the model
store can be insulated from the naming of the concepts, which may vary between
standards.

Metamodeling frameworks are said to be bootstrapped by a meta-metamodel
or are “described using themselves” [20]. Informally, a framework is meta-circular
if there exists a metamodel MM whose conforming models are metamodels and
MM is among them. Of course, this terminology has concerned many researchers,
as it may lead to circular definitions. We formalize meta-circularity as a simple
property of the framework:

1. transform Metalnterpreter from ModelStore as in to ModelStore as out
2. {

3. out.MetaNode(name) :- in.Node(name, type),

4. type = in.MetaNode(“Class”).

5. out.MetaEdge(name,

6. MetaNode(srcname),

7. MetaNode(dstname)) :- in.Edge(name, src, dst, type),

8. src = in.Node(srcname, mClass),

9. dst = in.Node(dstname, mClass),

10. type = in.MetaEdge(“Assoc”, mClass, mClass),
11. mClass = in.MetaNode(“Class”).

2.}

Fig. 6. A simple meta-interpreter that promotes nodes of type Class and edges of type
Assoc to the meta-level.

1. metaDiffers := in.MetaNode(t), fail out.MetaNode(t).

2. metaDiffers := out.MetaNode(t), fail in.MetaNode(t).

3. metaDiffers := in.MetaEdge(t, MetaNode(st), MetaNode(dt)),

4. fail out.MetaEdge(t, MetaNode(st), MetaNode(dt)).
5. metaDiffers := out.MetaEdge(t, MetaNode(st), MetaNode(dt)),

6. fail in.MetaEdge(t, MetaNode(st), MetaNode(dt)).
7. metaCircular := !metaDiffers & in.conforms & out.conforms.

Fig. 7. Specification of meta-circularity for the typed graph framework.

Definition 4 (Meta-circularity). A framework is a meta-circular if there ex-
ists a conforming input to the meta-interpreter producing a conforming output
with the same metamodel.

The input witnessing this property is the meta-metamodel.

In our approach neither meta-circularity is required for bootstrapping nor
does a meta-metamodel determine properties of the framework. Instead, the
framework is determined by the model store, editing operations, and meta-
interpreter. A meta-metamodel, if it exists, is a byproduct of this framework.
In fact, it can be constructed automatically as a witness to the meta-circularity
property. Figure [7] shows the specification of meta-circularity in FORMULA. The
query definitions in Lines 1 - 2 test if there exists a meta-node in the input,
which is not in the output, and wvice versa. Lines 3 - 6 perform the same test
for meta-edges. Then meta-circularity is simply the absence of any discrepancies
at the meta-level of the input and output, both of which must conform to the
model store.

A meta-metamodel is constructed by adding the specification of meta-circularity

to the meta-interpreter and invoking the solver as follows:
solve Metalnterpreter Plnst metaCircular

The result is the meta-metamodel of Figure [§] There is an additional use for
this meta-metamodel; it provides a starting point for building metamodels using

model MetaMetaModel of ModelStore
{
MetaNode(“Class”)
MetaEdge(“Assoc”, MetaNode(“Class”), MetaNode(“Class”))
Node(“Class”, MetaNode(“Class”))
Edge(“Assoc”,
Node(“Class”, MetaNode(“Class”)),
Node(“Class”, MetaNode(“Class”)),
MetaEdge(“Assoc”, MetaNode(“Class”), MetaNode(“Class”)))

©0oNDGO WD

,_.
e

}

Fig. 8. An automatically generated meta-metamodel witnessing meta-circularity.

only the framework operations. For example, the state diagram abstraction used
in Figure [2| can be constructed as follows:

Tmi ©
- “Transition”, in.Node(“State”), in.Node(“State”), .
edge in.MetaEdge(“Assoc”, . ..) MM (10)
Tinode{ “State”, in.MetaNode(“Class”)) o

Tmi

where MM is the meta-metamodel, 7,,,; is an application of the meta-interpreter,
Titedge Creates an edge, and mpo7y is the application of 75 after 7;. If the semantics
of the model store or meta-interpreter are changed, then the starting point MM
can be automatically reconstructed. To our knowledge, this is the first time such
a technique has been demonstrated.

7 A MOPF-like Framework

Several issues arise when specifying a richer metamodeling framework, such as
the Meta-Object Facility (MOF). The first issue is the number of additional
concepts that must be specified. Naturally, this is handled by introducing more
types in the model store and more rules in the meta-interpreter. In the case
of MOF, the key concepts at the meta-level are Classifier, Class, Association,
Generalization, and Property. At the instance level there are InstanceSpecification,
Instance Value, and Slot concepts. An instance is related to one or more meta-
level Classifiers, which include Classes and Associations. Fach instance specifi-
cation contains Slots, which bind Values to Properties. The endpoints of n-ary
associations are expressed using slots and properties.

The second issue is the expressiveness needed to define the model store. Here
the primary complications are acyclicity and multiplicity constraints. MOF re-
quires the generalization relationship to be acyclic and strong containment to
be tree-structured. These constraints are not first-order definable, as they are
equivalent to finite transitive closure. Fortunately, CLP exposes fixpoint oper-
ators via recursive rules (see Example , so acyclicity constraints are easily

captured. Multiplicity constraints require the number of instances related to
another to be in an interval [k, k,]. FORMULA supports encoding of multiplic-
ity constraints through aggregation operators, such as count(), which count the
number of facts matching some pattern. For example, the following rule:

outEdgesInInterval(n) :- n is Node, Multiplicity(n, ki, ku),
count(Edge(-, n, _,)) >= kI,
count(Edge(_, n, _,)) <= ku.

produces an outEdgesInInterval(n) fact for every node n whose out-edges num-
ber between k;(n) and k,(n). The expression n @s Node is a shorthand for
Node(-, -). Please see http://research.microsoft.com/formulalfor an exam-
ple of a MOF-like framework.

8 Discussion and Conclusion

We have provided a modular specification of a complete metamodeling frame-
work using ADTs and CLP. The key components of this specification where: (1)
a model store, formalizing the legal metamodel/model pairs, (2) editing oper-
ations, formalizing the evolution of the model-level elements within the frame-
work, (3) a meta-interpreter, formalizing the promotion of elements from the
model-level to the meta-level. We have illustrated that FORMULA simplifies the
presentation through the use of domains, transformations, and partial models.
We have shown that proofs can be phrased as CLP satisfiability problems and au-
tomatically solved. Using this approach we were able to provably synthesize the
meta-metamodel of the specified framework. To our knowledge, this is the first
time this has been accomplished. It also shows concretely that meta-metamodels
simply fall out of the specification, and are not paradoxical. (Though this fact
has long been known.)

Throughout this paper we focused on automatic proofs, though test-case
generation is another immediate consequence. This can be accomplished by de-
scribing a regime of interesting test-cases using a query definition, and then con-
structing instances satisfying the query. For example, to generate metamodels
we solve for conforming instances of the model store with no model-level ele-
ments. To generate models conforming to a metamodel, we solve for conforming
instances that share a common fixed meta-level. The FORMULA module system
makes it straightforward to add these additional constraints for the purpose of
test-case generation.

These results point the way to interesting future work. First, there is the
question of how to automatically generalize unsatisfiability results to interpre-
tations of arbitrary size. Positive theoretical results include known fragments of
CLP that are decidable and well-behaved. However, we do not know of exist-
ing tools that leverage these results to compute an automatic upper-bound on
the size of r{). Second, there are other properties of a metamodeling framework
that might be of interest. We might want to know a closure property that every
well-formed instance of the model store can be constructed by starting from the

http://research.microsoft.com/formula

meta-metamodel and applying the framework operations. Automatically decid-
ing such a property may very well require symbolic model checking in addition
to the techniques illustrated here.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Clark, T., Evans, A., Kent, S.: The Metamodelling Language Calculus: Foundation
Semantics for UML. In: FASE. (2001) 17-31

Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: FMOODS.
(2006) 171-185

Varr6, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML. Journal of Software
and Systems Modeling 2(3) (October 2003) 187-210

Alanen, M., Porres, I.: A Metamodeling Language Supporting Subset and Union
Properties. Software and System Modeling 7(1) (2008) 103-124

Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. Formal Asp. Comput.
22(3-4) (2010) 269-296

Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components,
platforms and possibilities: towards generic automation for MDA. In: EMSOFT.
(2010) 39-48

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science). An EATCS Se-
ries. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

Atkinson, C., Kithne, T.: The Essence of Multilevel Metamodeling. In: UML.
(2001) 19-33

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3) (2001) 374-425

Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: Specification and Programming in Rewriting Logic. Theor. Comput.
Sci. 285(2) (2002) 187-243

Varrd, D.: Automated Formal Verification of Visual Modeling Languages by Model
Checking. Software and System Modeling 3(2) (2004) 85-113

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model
Transformation. In: MODELS. (2007) 436-450

Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: TACAS. (2007)
632-647

Ehrig, K., Kiister, J.M., Taentzer, G.: Generating Instance Models From Meta
Models. Software and System Modeling 8(4) (2009) 479-500

Gronniger, H., Ringert, J.O., Rumpe, B.: System Model-Based Definition of Mod-
eling Language Semantics. In: FMOODS/FORTE. (2009) 152-166

Mendonga, M., Wasowski, A., Czarnecki, K.: SAT-based Analysis of Feature Mod-
els is Easy. In: SPLC. (2009) 231-240

Jackson, E.K., Sztipanovits, J.: Constructive Techniques for Meta- and Model-
Level Reasoning. In: MODELS. (2007) 405-419

Jaffar, J., Maher, M.J.,; Marriott, K., Stuckey, P.J.: The Semantics of Constraint
Logic Programs. J. Log. Program. 37(1-3) (1998) 1-46

de Moura, L.M., Bjgrner, N.: Z3: An efficient smt solver. In: TACAS. (2008)
337-340

Object Management Group: Meta Object Facility (MOF) Core Specification Ver-
sion 2.4. (2010)

	Reasoning about Metamodeling with Formal Specifications and Automatic Proofs

