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Abstract

This paper introduces IQPs (Integer Quadratic
Programs) as a way to model joint inference
for the task of concept recognition in clinical
domain. IQPs make it possible to easily in-
corporate soft constraints in the optimization
framework and still support exact global infer-
ence. We show that soft constraints give statis-
tically significant performance improvements
when compared to hard constraints.

1 Introduction
In this paper, we study the problem of concept

recognition in the clinical domain. State-of-the-
art approaches (de Bruijn et al., 2011; Patrick et
al., 2011; Torii et al., 2011; Minard et al., 2011;
Jiang et al., 2011; Xu et al., 2012; Roberts and
Harabagiu, 2011) for concept recognition in clinical
domain (Uzuner et al., 2011) use some sequence-
prediction models like CRF (Lafferty et al., 2001),
MEMM (McCallum et al., 2000) etc. These ap-
proaches are limited by the fact that they can model
only local dependencies (most often, first-order
models like linear chain CRFs are used to allow
tractable inference).

Clinical narratives, unlike newswire data, provide
a domain with significant knowledge that can be ex-
ploited systematically. Knowledge in this domain
can be thought of as belonging to two categories:
(1) Background Knowledge captured in medical on-
tologies like UMLS, MeSH and SNOMED CT and
(2) Discourse Knowledge expressed in the fact that
the narratives adhere to specific writing style. While
the former can be used by generating more expres-
sive knowledge-rich features, the latter is more in-

teresting from our current perspective, since it pro-
vides global constraints on what output structures
are likely and what are not. We exploit this structural
knowledge in our global inference formulation.

Integer Linear Programming (ILP) based ap-
proaches have been used for global inference in
many works (Roth and Yih, 2007; Punyakanok et
al., 2004; Marciniak and Strube, 2005; Bramsen et
al., 2006; Barzilay and Lapata, 2006; Riedel and
Clarke, 2006; Clarke and Lapata, 2008; Denis et al.,
2007; Chang et al., 2011). However, in most of these
works, researchers have focussed only on hard con-
straints while formulating the inference problem.

Formulating all the constraints as hard constraints
is not always desirable because in many cases, con-
straints are not perfect. In this paper, we propose In-
teger Quadratic Programs (IQPs) as a way of formu-
lating the inference problem. IQPs is a richer family
of models than ILPs and it enables us to easily incor-
porate soft constraints into the inference procedure1.
Our experimental results show that soft constraints
indeed give much better performance than hard con-
straints.

2 Methodology
Task Description Input consists of clinical reports
in free-text (unstructured) format. The task is: (1)
to identify the boundaries of medical concepts and
(2) to assign types to such concepts. Each concept
can have 3 possible types, namely (1) Test, (2) Treat-
ment and (3) Problem. We would refer to these three
types by TEST, TRE and PROB in the following dis-

1It should be noted that it is possible to reduce IQPs to ILPs
using variable substitution. However, resulting ILPs can be ex-
ponentially larger than original IQPs. Thus, IQPs provide a
strict modeling advantage compared to ILPs.



[Chest x-ray] gave positive evidence for [atelectasis] and [sarcoidosis].
Test Problem Problem

(a) Example 1

No [hemoptysis], [hematemesis], [urgency], [abdominal pain], [black or tarry stools], [dysuria].
Problem ProblemProblem ProblemProblemProblem

(b) Example 2

Figure 1: This figure motivates the global inference procedure we used. For discussion, please refer to §2.

cussion.

Our Approach In the first step, we identify the
concept boundaries using a CRF (with BIO encod-
ing). Features used by CRF include the constituents
given by MetaMap (Aronson and Lang, 2010), shal-
low parse constituents, surface form and part-of-
speech of words in a window of size 3. We also use
conjunctions of the features.

After finding concept boundaries, we determine
the probability distribution for each concept over 4
possible types (TEST, TRE, PROB or NULL). These
probability distributions are found using a multi-
class SVM classifier (Chang and Lin, 2011). Fea-
tures used for training this classifier include con-
cept tokens, full text of concept, bi-grams, head-
word, suffixes of headword, capitalization pattern,
shallow parse constituent, Metamap type of concept,
MetaMap type of headword, occurrence of concept
in MeSH and SNOMED CT, MeSH and SNOMED
CT descriptors.

Inference Procedure: The final assignment of
types to concepts is determined by an inference pro-
cedure. The basic principle behind our inference
procedure is: “Types of concepts which appear close
to one another are often closely related. For some
concepts, type can be determined with more confi-
dence. And relations between concepts’ types guide
the inference procedure to determine the types of
other concepts.” We will now explain it in more de-
tail with the help of examples. Figure 1 shows two
sentences in which the concepts are shown in brack-
ets and correct (gold) types of concepts are shown
above them.

First, consider first and second concepts in Fig-
ure 1a. These concepts follow the pattern: [Con-
cept1] gave positive evidence for [Concept2]. In
clinical narratives, such a pattern strongly suggests
that Concept1 is of type TEST and Concept2 is of

Pattern
1 using [TRE] for [PROB]
2 [TEST] showed [PROB]
3 Patient presents with [PROB] status post

[TRE]
4 use [TRE] to correct [PROB]
5 [TEST] to rule out [PROB]
6 Unfortunately, [TRE] has caused [PROB]

Table 1: Some patterns that were used in constraints.

type PROB. Table 1 shows more of such patterns.
Next, consider different concepts in Figure 1b. All
these concepts are separated by commas and hence,
form a list. It is highly likely that such concepts
should have the same type.

3 Modeling Global Inference
Inference is done at the level of sentences. Sup-

pose there are m concepts in a sentence. Each of
the m concepts has to be assigned one of the follow-
ing types: TEST, TRE, PROB or NULL. To represent
this as an inference problem, we define the indicator
variables xi,j where i takes values from 1 to m (cor-
responding to concepts) and j takes values from 1 to
4 (corresponding to 4 possible types). pi,j refers to
the probability that ith concept is of jth type.

So, we can write the following optimization prob-
lem to find the optimal concept types:

max

m∑
i=1

4∑
j=1

xi,j · pi,j (1)

subject to
4∑

j=1

xi,j = 1 ∀i (2)

xi,j ∈ {0, 1} ∀i, j (3)

The objective function in Equation (1) expresses
the fact that we want to maximize the probability of



assignment of concept types. Equation (2) enforces
the constraint that each concept has a unique type.
We would refer to these as Type-1 constraints.
3.1 Constraints Used

In this subsection, we will describe two addi-
tional types of constraints (Type-2 and Type-3)
that were added to the optimization procedure de-
scribed above. Whereas Type-1 constraints de-
scribed above were formulated as hard constraints,
Type-2 and Type-3 constraints are formulated as
soft constraints.
3.1.1 Type-2 Constraints

Certain constructs like comma, conjunction, etc.
suggest that the 2 concepts appearing in them should
have the same type. Figure 1b shows an example of
such type of constraints. Suppose, there are n2 such
constraints. Also, assume that lth constraint says
that the concepts Rl and Sl should have the same
type. Now, we define a variable wl as follows:

wl =

4∑
m=1

(xRl,m − xSl,m)2 (4)

Now, if the concepts Rl and Sl have the same
type, then wl would be equal to 0. Also, if the con-
cepts Rl and Sl don’t have the same type, then wl

would be equal to 2. So, lth constraint can be en-
forced by subtracting (ρ2 · wl

2 ) from the objective
function given by Equation (1). Thus, a penalty of
ρ2 would be enforced iff lth constraint is violated.
3.1.2 Type-3 Constraints

Some short patterns suggest possible types for the
concepts which appear in them. Each such pattern,
thus, enforces constraint on the types of concepts
which appear in them. Figure 1a shows an exam-
ple of such type of constraints. Suppose there are
n3 such constraints. Also, assume that the kth con-
straint says that the concept A1,k should have the
type B1,k and that the concept A2,k should have the
type B2,k. Equivalently, kth constraint says the fol-
lowing in boolean algebra notation: (xA1,k,B1,k

=

1) ∧ (xA2,k,B2,k
= 1). For kth constraint, we intro-

duce one more variable zk ∈ {0, 1} which satisfies
the following condition:

zk = 1⇔ xA1,k,B1,k
∧ xA2,k,B2,k

(5)

Using boolean algebra, it is easy to show that
Equation (5) can be reduced to a set of linear in-

max

m∑
i=1

4∑
j=1

xi,j · pi,j −
n3∑
k=1

ρ3(1− zk)

−
n2∑
l=1

(
ρ2 ·

∑4
m=1(xRl,m − xSl,m)2

2

) (6)

subject to
4∑

j=1

xi,j = 1 ∀i (7)

xi,j ∈ {0, 1} ∀i, j (8)
zk = 1⇔ xA1,k,B1,k

∧ xA2,k,B2,k
∀k ∈ {1...n3} (9)

Figure 2: Final Optimization Problem (an IQP)

equalities. Thus, we can incorporate the kth con-
straint in the optimization problem by adding to it
the constraint given by Equation (5) and by subtract-
ing (ρ3(1 − zk)) from the objective function given
by Equation (1). Thus, a penalty of ρ3 is imposed iff
kth constraint is not satisfied (zk = 0).

3.2 Final Optimization Problem - An IQP
After incorporating all the constraints mentioned

above, the final optimization problem (an IQP) is
shown in Figure 2. We used Gurobi toolkit to solve
such IQPs. In our case, it solves 76 IQPs per sec-
ond on a quad-core server with Intel Xeon X5650 @
2.67 GHz processors and 50 GB RAM.

4 Experiments and Results
4.1 Datasets and Evaluation Metrics

For our experiments, we used the datasets pro-
vided by i2b2/VA team as part of 2010 i2b2/VA
shared task (Uzuner et al., 2011). The datasets used
for shared task contained de-identied clinical reports
from three medical institutions: Partners Health-
care (PH), Beth-Israel Deaconess Medical Center
(BIDMC) and the University of Pittsburgh Medical
Center (UPMC). UPMC data was divided into 2 sec-
tions, namely discharge (UPMCD) and progress notes
(UPMCP). A total of 349 training reports and 477
test reports were made available to the participants.
However, data which came from UPMC (more than
50% data) was not made available for public use. As
a result, we had only 170 clinical reports for training
and 256 clinical reports for testing. Table 3 shows
the number of clinical reports made available by dif-
ferent institutions. The strikethrough text in this ta-



B BK BC BKC
P R F1 P R F1 P R F1 P R F1

TEST 92.4 79.4 85.4 91.9 80.2 85.7 92.7 79.6 85.7 92.1 80.4 85.8
TRE 92.1 73.6 81.8 92.0 79.5 85.3 92.3 76.8 83.8 92.0 80.2 85.7
PROB 83.6 83.6 83.6 88.9 83.7 86.3 85.9 83.8 84.8 89.6 83.9 86.7

OVERALL 88.4 79.4 83.6 90.7 81.4 85.8 89.6 80.5 84.8 91.0 81.7 86.1

Table 2: Our final system, BKC, consistently performed the best among all 4 systems (B, BK, BC and BKC).

PH BIDMC UPMCD UPMCP
Train 97 73 98 81
Test 133 123 102 119

Table 3: Dataset Characteristics

ble indicates that the data was not made available
for public use and hence, we couldn’t use it. We
used about 20% of the training data as a develop-
ment set. For evaluation, we report precision, recall
and F1 scores.

4.2 Results
In this section, we would refer to following 4

systems: (1) Baseline (B), (2) Baseline + Knowl-
edge (BK), (3) Baseline + Constraints (BC) and (4)
Baseline + Knowledge + Constraints (BKC). Please
note that the difference between B and BK systems
is that the B system (unlike BK system) doesn’t
use features derived from domain-specific knowl-
edge sources (namely MetaMap, UMLS, MeSH and
SNOMED CT) for training the classifiers. Both B
and BK systems do not use the inference procedure.
BKC system uses all the features and also the in-
ference procedure. In addition to these 4 systems,
we would refer to another system, namely, BKC-
HARD. This is similar to BKC system. However,
it sets ρ2 = ρ3 = 1 which effectively turns Type-2
and Type-3 constraints into hard constraints by im-
posing very high penalty.
4.2.1 Importance of Soft Constraints

Figures 3a and 3b show the effect of varying
the penalties (ρ2 and ρ3) for Type-2 and Type-
3 constraints respectively. These figures show the
F1-score of BKC system on the development set.
Penalty of 0 means that the constraint is not active.
As we increase the penalty, the constraint becomes
stronger. As the penalty becomes 1, the constraint
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Figure 3: These figures show the result of tuning the
penalty parameters (ρ2 and ρ3) for soft constraints.

becomes hard in the sense that final assignments
must respect the constraint.

We observe from Figures 3a and 3b that for Type-
2 and Type-3 constraints, global maxima is attained
at ρ2 = 0.6 and ρ3 = 0.3 respectively.

Hard vs Soft Constraints Table 4 compares the
performance of BKC-HARD system with that of
BKC system. First 3 rows in this table show the
performance of both systems for the individual cat-
egories (TEST, TRE and PROB). Fourth row shows
the overall score of both systems. BKC system out-
performed BKC-HARD system on all the categories
by statistically significant differences at p = 0.05
according to Bootstrap Resampling Test (Koehn,
2004). For the OVERALL category, BKC system im-
proved over BKC-HARD system by (86.1−85.1 =
)1.0 F1 points.
4.2.2 Comparing with state-of-the-art baseline

In 2010 i2b2/VA shared task, majority of top sys-
tems were CRF-based models. So, we decided to
use CRF as our baseline. Table 2 compares the
performance of 4 systems: B, BK, BC and BKC.
As pointed out before, our BK system uses all the
knowledge-based features and is very similar to the



BKC-HARD BKC
TEST 84.7 85.8
TRE 84.7 85.7
PROB 85.6 86.7

OVERALL 85.1 86.1

Table 4: Soft constraints (BKC) consistently perform
much better than hard constraints (BKC-HARD).
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Figure 4: This figure shows the effect of training data
size on performance of concept recognition.

top-performing systems in i2b2 challenge. We see
from Table 2 that BKC system consistently per-
formed the best for individual as well as overall
categories2. This result is statistically significant
at p = 0.05 according to Bootstrap Resampling
Test (Koehn, 2004). It is also to be noted that BC
system performed significantly better than B sys-
tem for all the categories. Thus, the constraints are
helpful even in the absence of knowledge-based fea-
tures. Since we report results on publicly available
datasets, the future works would be able to compare
their results with ours.
4.2.3 Effect of training data size

In Figure 4, we report the overall F1-score on a
part of the development set as we vary the size of
training data from 40 documents to 130 documents.
We notice that the performance increases steadily
as more and more training data is provided. This
suggests that if we could train on full training data
as was made available during challenge, the final
scores could be much higher. We also notice from
the figure that BKC system consistently performs
better than state-of-the-art BK system as we vary

2Please note that the results reported in Table 2 can not be
directly compared with those reported in the challenge because
we had only a fraction of the original training and testing data.

the size of training data. This shows that the joint
inference procedure designed by us is very robust.

5 Discussion and Related Work
Joint inference approaches which incorporate

declarative knowledge in statistical models have
been widely used in last few years to solve IE tasks.
Some of the representative models for joint infer-
ence include posterior regularization (PR) (Ganchev
et al., 2010), generalized expectations (GE) (Mann
and McCallum, 2007; Mann and McCallum, 2008),
constraint-driven learning (CoDL) (Chang et al.,
2007), methods based on integer programs (Roth
and Yih, 2004), gibbs sampling (Finkel et al.,
2005) and recently the methods that are based on
dual-decomposition (Reichart and Barzilay, 2012).
Among these approaches, PR, GE and CoDL were
proposed for semi-supervised setting. However, in
this paper, we are considering a fully supervised sce-
nario.

Roth and Yih (2004) suggested the use of integer
programs to model joint inference in a fully super-
vised setting. Their approach is most closely related
to ours. However, they used only hard constraints
in their inference formulation. Chang et al. (Chang
et al., 2012) recently used soft constraints in Con-
strained Conditional Models. However, unlike us,
they performed approximate inference using beam
search. In this paper, we showed that it is possible to
do exact inference efficiently even while using soft
constraints.

Conclusion
This paper presented a global inference strategy

(using IQP) for concept recognition which allows
us to model structural knowledge of the clinical do-
main as soft constraints in the optimization frame-
work. Our results showed that soft constraints are
much more effective than hard constraints.
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