
Science of Computer Programming () –

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A model-integrated authoring environment for
privacy policies
Andras Nadas a, Tihamer Levendovszky a,∗, Ethan K. Jackson b, Istvan Madari a,
Janos Sztipanovits a

a Vanderbilt University, Nashville, TN, United States
b Microsoft Research, Seattle, WA, United States

h i g h l i g h t s

• Model-Integrated Privacy Policy Authoring environment for lawyers and doctors.
• Precise semantic anchoring to term algebras and logic programs.
• A domain-specific language describing privacy policies with patterns.
• An execution environment by the tool FORMULA to prove correctness by design.
• A formally underpinned environment to reason about privacy policies.

a r t i c l e i n f o

Article history:
Received 8 March 2012
Received in revised form 2 May 2013
Accepted 5 May 2013
Available online xxxx

Keywords:
Privacy policies
Model-integrated computing
Constraint logic programming

a b s t r a c t

Privacy policies are rules designed to ensure that individuals’ health data are properly
protected. Health Information Systems (HIS) are legally required to adhere to these policies.
Since privacy policies are imposed on complex software systems, it is extremely hard to
reason about their conformance and consistency. In order to address this problem, we
have created a model-driven authoring environment to formally specify privacy policies
originally defined in legal terms. In our observation, appropriate formalization of our policy
language enabled formal analysis of its policies; these features were key to a successful
model-driven engineering process. In this paper we present our modeling language and
show its semantic anchoring to analyzable logic programs. We report on several projects
where our approach is being applied and validated.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Secure access to health information has become vital to cost-effective health care delivery. However, since the advent of
electronic medical records and health information exchange infrastructures, the number of laws governing patient privacy
has been growing every year. Naturally, the likelihood of inconsistent or contradictory policies is increasingwith the number
of regulatory agencies and offices. For example, in the United States health information systems must operate according to
federal and state laws, and local institutional policies created by the privacy officer of various health care organizations. In
summary, the growing regulatory environment presents a considerable challenge for the development of health information
systems.

∗ Corresponding author. Tel.: +1 6156689827.
E-mail addresses: andras.nadas@vanderbilt.edu (A. Nadas), tihamer@isis.vanderbilt.edu (T. Levendovszky), ejacksonh@microsoft.com (E.K. Jackson),

pityu@isis.vanderbilt.edu (I. Madari), janos.sztipanovits@vanderbilt.edu (J. Sztipanovits).

0167-6423/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.05.004

http://dx.doi.org/10.1016/j.scico.2013.05.004
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:andras.nadas@vanderbilt.edu
mailto:tihamer@isis.vanderbilt.edu
mailto:ejacksonh@microsoft.com
mailto:pityu@isis.vanderbilt.edu
mailto:janos.sztipanovits@vanderbilt.edu
http://dx.doi.org/10.1016/j.scico.2013.05.004

2 A. Nadas et al. / Science of Computer Programming () –

Clearly, methods for automatically enforcing policies are needed. Formally specified privacy policies have the advantage
of automated enforcement and consistency checking. There are several conceptual formal frameworks for accomplishing
this. Onewell known approach is thework of Nissenbaum andMitchell on contextual integrity [1], which states that privacy
requirements must be understood within the social contexts producing them. Their formalization must include this social
context [2].

Following these ideas, we present a model-based policy authoring framework called PATRN (Policy Authoring and
Reasoning). Our contributions are:

• Domain-specific language. We present a domain-specific language (DSL) for precise policy authoring. It allows non-
experts to easily write formal policies.

• Formalization and analysis. We formalize PATRN using the FORMULA specification language, which is based on logic
programming.We show that this approach facilitates automated analysis of policies. We use a technique called semantic
anchoring that connects the model-based environment with the formal specification.

• Validation. We report on several projects where PATRN is being applied and its efficacy validated. We describe the
successes and challenges encountered thus far.

The paper is organized as follows: First, we present related work in Section 2. Section 3 describes the PATRN DSL that
successfully enables the modeling of the wide variety of privacy policies found in Health Information Systems. Detailed
information is provided on each of the components of the language including the ontologies, the templates, the semantic
anchoring, and the policymodels themselves. Section 4 reviews themathematical background of the FORMULA specification
language, and Section 5 demonstrates the formalization of PATRN with FORMULA. Section 6 illustrates automated analysis
of PATRN policies using FORMULA. Section 7 reports on successes and challenges observed when applying PATRN, and we
conclude with a discussion of future work in Section 8.

2. Background and related work

The Health Insurance Portability and Accountability Act (HIPAA) was introduced in 1996. Since its introduction there
have been efforts [3] to formalize its federal-level privacy policies; these are usually referred to as ‘‘HIPAA policies’’. In 2010
the Health Information Technology for Economic and Clinical Health (HITECH) Act addedmore regulations and policies. Our
work focuses on creating an infrastructure that helps formalize and analyze the increasing number of privacy policies for
health information systems. The formalization of privacy policies enables the analysis, composition and transformation of
the policy frameworks [4].

Many existing analysis approaches focus on system software and not the policies themselves. The work described in [5]
analyzes interactive systems using probabilistic bisimulation relations. Our method is not probabilistic, but reasons about
policy specification using a finite model finder. Most of the existing work regarding the formalization of privacy policies was
accomplished to enable the enforcement of the policies in systems they govern [6,7]. It has been shown that formal privacy
policies can be used to automate audit procedures based on logs that systems create at run-time [8,9]. The formalization
is usually carried out with logic programming languages, typically PROLOG [10], or with temporal logic [11]. SecPAL [12]
focuses on the creation of extensible authorization languages and their formal semantics that enables authorization in large
distributed systems. It provides formal semantics and declarative predicates of principals that helps describe the domain of
the authorization rules and maps them to Datalog for evaluation.

While these approaches aim at consistent manual or semi-automated encoding of policies in logic terms, mostly
compliant with PROLOG specifications, our method introduces a separation of concerns. A domain-specific language with
well-defined and extensible constructs precisely represents the key concepts (ontology) and allows reusable and user-
defined templates. The formalisms of the logic terms of the other approaches can be expressed with our template language,
however, our approach also supports their extensions, too. As opposed to policy analysis, only a few approaches go beyond
audit or enforcement by providing formal analysis. [13] contributes a formal textual language to describe privacy policies. In
contrast to our approach, they do not use graphical models, and their language does not include extensibility mechanisms.
However, the semantics of the language is also a logic program extended with formal data types. This semantics, however
is not customizable as our template-based method.

Contrary to formalisms that are written in a logic programming language [10], the formal models presented in this paper
strictly enforces the syntax of the building blocks and provide formal models that are syntactically correct by construction.
The extensibility of our approach coupledwith the ontologymodels can also formalize the context and domain of the policies
to a greater extent. Such formalmodel elements enable finer refinement of the policy rules by the formalization of hierarchies
and relations of certain objects and entities, consequently fulfilling a further requirement for adoption in real systems as
described in [10].

The semantics of domain-specific languages has been the focus of many research efforts [14–16], including semantics for
the purpose of verification. The formal semantics of general modeling languages, such as UML [17–19], and programming
languages [20–23] has also been extensively studied.

A. Nadas et al. / Science of Computer Programming () – 3

Table 1
Examples of the policies that were formalized using PATRN, including a brief explanation.

Level Name Content

Federal HIPAA Opt-out Patient can opt out from all disclosures made through an HIE.

State Disclosures of General Health Information Inmost states General Health Information can be disclosed for treatment
without Patient consent.

State Disclosures of Medication History In some states Medication History can only be disclosed to a treating
Physician without Patient consent.

State Disclosures of Mental Health Reports In most states Mental Health Reports can only be disclosed with written
consent or to Physicians that already treat the patient

State Disclosures of HIV Reports In some states HIV reports can only be disclosed in case of Emergency or
with written consent from the Patient

Institution Disclosures of Protected Health Information
(PHI) to third parties

Disclosure of PHI can only happen with Patient consent or to Insurance
companies for payment or to an External Provider for treatment

Institution Use of Protected Health Information (PHI)
with IRB approval

PHI can be only be used for treatment unless there is an IRB approval for
non-treatment use.

Institution Access to Protected Patient Information (PPI)
by Job Role

PPI can only be accessed by employees with certain Job Roles, mainly
Clinicians but also Administrators for Payment processing.

Previous work has shown that domain-specific modeling languages are more reusable with the help of semantic anchor-
ing [24]. Semantic anchoring for domain specific languages has been accomplished with Abstract State Machines [25–27]
and logic programming languages [28].

Usingmodeling and semantic anchoring, it is possible to extend and incorporate already existing research results into the
formal policy models. More specifically, the template models that are presented in detail in Section 3.4 enables the incorpo-
ration of established privacy languages such as the ones presented in [13] into the modeling environment. Furthermore, it
is possible to leverage the established ontologies [29] to be used as the domain language in parallel to the other privacy lan-
guages. It is also possible to integrate privacy languages as the language of the semantic anchors. In this case the semantics
of the templates would be written using the formalisms established by the privacy language, thus providing all the analysis
capabilities of the privacy language to the formal policy models.

FORMULA (Formal Modeling Using Logic Programming and Analysis) is a formal modeling language based on Algebraic
Data Types (ADTs) and Constraint Logic Programming (CLP). FORMULA has been shown to be able to formalize structural
semantics of domain-specific modeling languages [30]. It has also been proven that FORMULA can reason about how non-
functional requirements impact the system and platform design space [31]. The capabilities of FORMULA to be able to reason
on domain-specific languages with metamodeling frameworks were also demonstrated [32].

3. PATRN: the MDE tool for formal policy models

Our initial goal was to greatly expand the set of formalized policies by including state policies, institutional policies
and HITECH policies besides the already formalized HIPAA policies. When we reviewed these policies, we realized that the
many of the policies follow similar patterns. For example, the policies that control the disclosure of themedication history of
patients are very similar in the states California and Tennessee. While the policy of California is stricter, both policies relate
the same concepts in similar context. The main difference between the policies is in the constraints that they impose on
the patient and physician. By creating templates that can cover the policies that share the same characteristics, it becomes
possible to simplify the formalization process. Table 1 shows a brief list of the policies we examined and later modeled with
PATRN. The listed state level policies regulating the disclosures of highly sensitive information were modeled for several
states including California, Tennessee and New Hampshire.

We also found that the policies use objects and entities that can be classified and organized using ontologies. Combining
these observations allowed us to create a formalization framework for privacy policies. The four pillars that underpin the
policy formalization are as follows: (1) reusable constraint patterns, (2) ontologies for the entities, (3) a logic programming
language for the formal description, and (4) an execution environment for the automated reasoning. Minor parts of the code
generators have been written in a general purpose programming language. The framework is shown in Fig. 1.

The PATRN policy framework makes the formalized policies highly reusable in many different domains. With anchoring
the semantics for analysis, it is possible to detect conflicts, implications, entailment and equivalence between policies or
policy sets. It is also possible to anchor operational semantics to the patterns and compose and export the formalized policies
into an execution framework that enforces them in a health information system using the defined semantics.

Our cooperation with medical institutions has shown that this framework is able to bridge the gap between the policy
makers, privacy officials, andhealth information systemengineers by providing a common, formal, andunambiguous system
of specification and verification.

4 A. Nadas et al. / Science of Computer Programming () –

Fig. 1. The overview of the components of the policy formalization framework.

Fig. 2. The architecture of the PATRN environment.

3.1. PATRN introduction

The PATRN toolkit is aModel-Integrated Computing (MIC) toolkit comprised of severalMIC tools to provide an integrated
environment to formalize, compose, and reason about privacy policies. The environment consists of the following main
components. (i) A domain-specific modeling environment implemented in GME [33]. This describes the possible entities
and their relationships with ontologies, as well as the policies defined with a set of reusable hierarchical constraints over
the entities. (ii) Textual implementations of the constraints on the lowest level of the hierarchy. The formal policy models
are composed together from the ontologies and policy templates.

The formalization of the policies with the PATRN toolkit is achieved as shown in Fig. 2. The first step is to recognize the
common patterns used in the textual policy descriptions. These patterns will form the templates in PATRN. The next step is
to compile the object and actors of the policies and organize them into ontologies. Once the templates and ontologies are
defined, formal policy models can be composed from them.

Domain-specific languages formalize the syntax of the well-formed models only by means of metamodeling. In order to
utilize formal machinery, we need to assign formal semantics to our domain-specific models. In fact, the semantics of the
templates are assigned directly by the modeler at design time by providing logic program fragments. These fragments are
completed automatically when the templates are specialized as shown in Section 5.2. The formal policymodels receive their
semantics from the templateswhich they are composed of. Eventually, templates are anchored to semantic templates.When
the patterns are specialized, the semantic templates are automatically specialized. Via thismechanism,we can automatically
assign specialized semantics to the policies themselves. Once the semantic anchors are provided to the formal policymodels
through the templates, the formal policy models can be interpreted and translated into the language of the execution
environment for analysis or enforcement. We emphasize that we do not focus on the problem of policy translation from
natural languages to our models.

In the following sections, we present the four components: the ontologies, the templates, the formal policy models and
the semantic anchoring mechanisms as well as how they relate to each other. We also present a use case based on real
world policies and demonstrate how the use case is formalized using the four components. Our target domain is a logic
programming tool that enables us to analyze and compare the formal policy models to detect contradictions, entailment
and equivalence. The logic programming tool used is FORMULA and the semantic anchoring is provided in a syntax close to
that of FORMULA. The translator that we use is a simple interpreter in GME that exports the ontologies into FORMULA, using
FORMULA’s own modeling language, and then expands the semantic anchors into FORMULA’s logical expression language.

A. Nadas et al. / Science of Computer Programming () – 5

Fig. 3. A simple model describing a taxonomy of persons.

3.2. Use case: state policies for releasing medication history

Theuse case thatwill show the functionality of our framework is taken froma comprehensive report [34] onhowdifferent
states handle the privacy aspect of exchanging Health Information. The report provides a unified and harmonized view on
how the disclosure of sensitive information is governed by the laws in each state. This harmonized and unified view enables
us to create use cases without the confusion stemming from the verbal differences in the laws themselves.

As an illustrative case study, we examine the disclosure of pharmacy record as sensitive health information. The
requirements for this vary from state to state, this policy provides us a simple but rich set for experimentation. While the
Tennessee laws and regulations do not limit the disclosure of pharmacy records, those in California limit the disclosure to
parties that can provide proof that they are in a treatment relation with the patient.

As for the Tennessee law:

Clinicians can access pharmacy records on patients without any restriction.

As for the California law:

Clinicians can access pharmacy records on patients only with proof that clinician and the patient are in a
treatment relation.

Even after a verbiage is given to the policies, they are still treated to be unified and harmonized. Thismeans that the same
words must mean the same in both policies.

3.3. Ontologies

The component that describes the relationship between entities in PATRN are ontologies. All of the other components,
the templates and the formal policy models, use the ontologies directly or model elements reference them. The ontologies
provide the facility to formally capture entities and their relationships that are referenced and used in the policies. The
ontology language in PATRN is a graphical derivative of the Ontology Web Language (OWL) [29] that is specified by the
metamodel of PATRN. The graphical language is capable of describing classes, individuals, inheritance relationships, and
properties with the same semantics as specified by OWL.

The reasonwhy the semantics of OWLwas adopted to the PATRN toolkit was to enable the integration, import and export
of ontologies from already existing sources and systems. Any ontology created in PATRN can be exported into a standard
RDF XML [35] file. Fig. 3 shows a small example of a person taxonomy describing that a clinician and a patient are both
persons and it is modeled after the use case in Section 3.2. To show how the PATRN ontology language matches OWL, the
same taxonomy is shown as an RDF in Fig. 4.

In PATRN, classes are used to classify and declare elements that are used in policy templates and policies. PATRN provides
means to specify inheritance or ‘is a’ relations between Classes. Specifying the inheritance relationship is possible by
assigning either sub-classes or super-classes to a class.While they are equivalent in expressiveness, supporting both kinds of
inheritance specificationmethod gives the users a choice to describe their ontologies in away that better suits their domain.
In the PATRN language, classes are represented by GMEmodels. These models can contain two different kinds of references
to other classes, one to specify sub-classes and one for super-classes as shown in Fig. 5.

PATRN also supports multiple inheritance between classes with the semantics provided by OWL. Multiple inheritance
enables the users to create multiple ontologies that are interconnected by common shared elements. With the multiple
ontologies, users can add new ontologies to the system and making certain that it will fit the already existing ones.

6 A. Nadas et al. / Science of Computer Programming () –

Fig. 4. RDF description of the person taxonomy in Fig. 3.

Fig. 5. The ontology language described in the GME metamodel language.

Another very important type of model in PATRN is the model of individuals. Individuals represent instances that are
members of classes defined; shown on the right side of Fig. 5. The terminology of Individual was adopted from OWL where
it represents Class instances. These models of individuals are used in formal policy models to describe actors and objects
in the formal policy models. In the formal policy models individuals are used to model either a certain person such as Dr.
Smith, or persons in certain role or function such as ‘the treating physician’. With individuals it is not only possible to model
Persons but also instances of objects like ‘the medical record of John Doe’.

3.4. Policy patterns: the policy templates

In the center of the PATRN toolkit is a graphical language that describes the templates for the formal policy models. Tem-
plates can represent patterns of relations between individuals, constraints and most of all policy language patterns. PATRN
supports the creation of any number of templates for any usage scenario. They have a special purpose when viewed from
the point of metamodeling. The templates and the ontology elements together describe a modeling language. It is a sub-
language of the language specified by the PATRNmetamodel.When viewed from this angle it is quite clear that the template
creation is a metamodeling activity and such requires in depth domain knowledge from the template authors.

The template authoring and curation is an iterative process. It is similar to the creation of patterns for Object Oriented
(OO) programming, the difference is the starting point. In the case of the OO programming the patterns are established based
on programming best practices, but for policy templates the templates are established based on the understanding of how
the policy text are written and not from already existing policy models. Once a set of templates has been established, the
templates can be iteratively refined, extended and curated until the new set of templates cover the target domain.

A. Nadas et al. / Science of Computer Programming () – 7

Fig. 6. The template language described in the GME meta language.

The templates provide a reusable structure with structural semantics enforced upon specialization of the pattern. The
templates themselves do not imply or possess any denotational semantics. However, these can be given to the templates
by anchoring their semantics with a formal specification that matches their intended final use. This separation of the
structural and denotational semantics enables the use of the same patterns and their instantiated models in different target
domains, such us analysis, verification and/or execution. Templates can be viewed as an extension of the OWL properties,
and represent an n-ary association between individuals of classes, where the different roles of the association can have
different properties assigned to them.

Each template is built from properties, constraints and a single relation domain as shown in Fig. 6. The properties and
constraints represent the facets of the templates that are filled at specialization time. The properties in PATRN are analogous
to the properties inOWL. They specify an association to the other parts of the specialized pattern. The domain of the template
specifies the class of the template that is taken from the ontology. In most cases the templates will have a domain that is a
policy template class. Templates can also describe other relationships such as a treatment relationship between a patient
and a clinician. In this case the domain of the template will be a treatment relationship class.

The template language in PATRN is a simplified and more descriptive graphical language adaptation of the object
properties of OWL. The result of this is that every instantiated template in PATRN can unambiguously be translated into
OWL. Every pattern instance translated into OWL will have an individual as a center element that is a member of the class
that is specified as the domain of the template. The individuals that are filling the facets of the template will be associated
to the center individual with the object property specified for the facet by the template model.

In order to show how templates can be used to model policies and other relationships, two examples that cover the use
case in Section 3.2 are described below. The first example, depicted in Fig. 7, illustrates a template for state policies. The
domain of the template is specified as Policy. This means that the template is for describing policies in contrast to describing
associations. The template is created to be able to describe the two policies of the use case—one used in California, one in
Tennessee. To create the template, generalized descriptions of the policies were captured. This generalization is as follows.

Requestor who is a Person can access an Object that is a Medical Document of a Subject who is a Person only
if the specified Constraint is satisfied.

The state policy template, that can describe all the variations of state policies from [34] for the disclosure of sensitive
health information, is modeled to have four facets from which one is constraint specification. The other three facets are
for specifying the actors and object of the template. The two actors of the policy are the Requestor and the Subject. Both
have range specifications that require them to be filled at instantiation time by members of the Person class. The explicit
declaration of the Requestor and Subject makes it possible to use these two actors in the constraint specification. The object
of the template is a member of theMedical Document class.

Templates can also be used to model associations that have two or more participating individuals. Typically these
associations describe relations or facts about actors and objects related to the policies. The templates can also be used
to model logical expressions, with the freedom of using any logic or declarative programming language anchored as the

8 A. Nadas et al. / Science of Computer Programming () –

Fig. 7. The template for state policies described in the PATRN template language.

Fig. 8. The template for treatment relations described in the PATRN template language.

semantics of the template. Composing the ontologies and the templates thatmodel relations and logical expressions enables
a wide range of constraints to be precisely described.

An example of a template describing a relation between actors is the template for describing a treatment relation between
a Provider and a Patient. The Domain of the template is specified as Treatment Relation and the two facets of the template are
from the Person class as show in Fig. 8.

An example for describing a logic expression can be as simple as an OR expression describing the function X OR Y as
shown in Fig. 9. The template for the OR expression will have a domain of Logic Expression and it would have two facets
of X and Y that will be the sub constraints. The facets X and Y do not have Ranges associated to them as they are facets for
Constraints similarly to the Constraints in the Policy Template. It is also not necessary to strongly type Constraints at this
level of abstraction. The typing of the facets happen when the semantics are anchored to the template. Logic expressions
are necessary for describing complex constraints such as the one in the policy:

Clinicians can access pharmacy records on patients only with proof that the clinician and the patient are in a
treatment relationship OR the patient gave written consent to disclose pharmacy documents.

A. Nadas et al. / Science of Computer Programming () – 9

Fig. 9. The template for the logical expression described in the PATRN template language.

Fig. 10. The PolicyModel described in the GME meta language.

3.5. Template specialization

The formal policy models are the main objects of the PATRN toolkit. The representations of the formal policy models
in the PATRN language are the PolicyModels. The PolicyModels are containers that encompass all the compositional parts
of the formal policy models. The PolicyModels are built by composing the templates for the policies and associations with
individuals derived from the ontologies as shown in Fig. 10.

To compose the templates with the individuals, the templates have to be specialized. The specialization is done by in-
stantiation using the type inheritancemechanism [36] built into GME. The type inheritance framework enables the creation
of type models and type instance models that are linked to the type models. In the case of the PATRN toolkit the type mod-
els are the templates, the policy and association models are the instances. The type instance infrastructure keeps the type
models and the type instance models synchronized by applying asymmetric synchronization rules. All the changes made
to the type models are propagated to its instance models, while no changes are allowed in the instance models that would
break the type-instance relationship.

In PolicyModels, the instantiated templates are composedwith the individuals that represent the actors and objects in the
policy. The individuals are entities that are instances or members of a class of the ontologies as described in Section 3.3. The
individuals for the two policies from Section 3.2 are the same, the two policies only differ in the constraint. The actors are

10 A. Nadas et al. / Science of Computer Programming () –

Fig. 11. The Tennessee Pharmacy Record disclosure policy described in the PATRN template language.

the Patient and the Clinician both of the policies. The object of the policies is the Pharmacy Record. These actors and object
are connected to the facets of the instances of the policy template. The Clinician actor will fill the facet for the Requestor,
the Patient for the Subject and the Pharmacy Record for the Object; as shown in Fig. 11. In case of the Tennessee pharmacy
record policy, as there is no constraint on the disclosure, the constraint is modeled with an empty model.

The constraints of the policy models are modeled very similar to the policy models themselves. The constraints are built
by using template instances, individuals derived from the ontologies and references of actors and objects. The templates
that are most often used are templates for associations and logic expressions. These templates are instantiated the same
way as the top level policy templates. The individuals are also created the same way as the actors and objects of the policy
models. The only model type that is not used by the top level policy models are the references of actors and objects. These
references enable the same actors and objects to be used to fill more than one facet of a template or fill facets in multiple
templates.

In order to model the California pharmacy record policy, the template infrastructure is used to specify the constraint
between the actor Clinician in the Requestor role and the Patient actor in the Subject role. The constraint established by the
policy restricts the disclosure of the information only to cases where there is a treatment relation between the Clinician and
the Patient. This is modeled by creating an instance of the Treatment Relation template under the constraint model filling in
for the constraint facet of the Policy Template instance. The Treatment Relation pattern has two facets, one for the Provider
actor and one for the Patient actor. To create a properly modeled constraint the actors that are used to fill in these facets
cannot be different from the individuals of the top level policy model. Two actor references are used to fill in these facets,
one referencing the Patient and the other one the Clinician as shown in Fig. 12.

3.6. Anchoring denotational or operational semantics to the templates

The template models of PATRN specify the abstract syntax of the policies and constraints modeled as described in Sec-
tion 3.4. To provide the denotational semantics of the templates, they have to be specified and anchored to the template
models. PATRN does not have a restriction on the language used to specify the semantics, but the environment used to ex-
ecute or analyze has to understand the language used. To specify the semantics of a template, a semantic description must
be associated to each template model. To provide denotational semantics to the templates in FORMULA a simple model that
contains fragment expressions that generates FORMULA code is used as elaborated in 5.2.

3.7. Lessons learnt from modeling real-life policies

Throughout this section we provided an in depth description on how policies can be formally modeled using the PATRN
toolkit. To successfully model a wide variety the domain with its policies must be understood first. The policies themselves
are usually created and written by the policy makers on a very high abstraction level. Mapping down from an abstract level
to formal one with concrete representation always have its caveats, such us gaps, conflicts and incompatibles. To minimize
the impact of such caveats the formal models can be analyzed and curated by the domain experts.

We have found thatwell-established templates as primitives can be the basis of a quite extensive set of policies. Although
these templates are created manually by domain experts, the code generation and the evaluation of the models composed

A. Nadas et al. / Science of Computer Programming () – 11

Fig. 12. The California Pharmacy Record disclosure policy described in the PATRN template language.

from the templates is automatic. The composition the primitives, the templates and the ontologies is currently performed
manually from raw policy texts. The currently available policy texts are intended to be read by humans who are also domain
experts.While there are publications that extract and analyze state policies [34] and could be used as a source for automatic
model generation such sources are not generally available for the institutional and other policies.

We do think that in the future processing the policy texts with natural language processing (NLP) could provide a great
tool to the policy modelers. The current developments in NLP for automatically deducting information from clinical texts
and narratives [37] will be adaptable for policy texts. One of the missing pieces is a standardized terminology for the policy
text, similar to the unified medical language system (UMLS) [38] in the medical domain. Also, the templates created for
the policy modeling can be used as to provide the structure and context patterns for the NLP based extraction of the formal
policy models from the policy texts.

4. Introduction to CLP and open world reasoning

Constraint logic programming (CLP) provides a powerful approach towriting formal specifications. First, a logic programΠ

can be directly (i.e. in polynomial-time) translated into first-order logic (FOL) according to its Clark Completion. Following the
notation of [39], we refer to this translation asΠ⋆. Second, logic programs are executable, allowing programmatic reasoning
to be applied while devising specifications. This form of reasoning is harder to obtain when directly writing FOL. Consider
the following program, which computes documents accessible within an organization.

Example 1 (Accessibility).

Πaccess
def
=

isAcc(id, x) :- doc(id, x).
isAcc(id, x) :- isAcc(id, y), subOrg(y, x).
isAcc(id, x) :- isAcc(id, y), subOrg(x, y).

The symbols doc(,), subOrg(,), and isAcc(,) are user-defined data constructors. Applying data constructors to values
constructs data. For instance, doc(1, ‘‘PhA’’) is the application of doc(,) to the constants 1 and ‘‘PhA’’. It constructs a new
value representing a medical document with ID 1 owned by a pharmacy named ‘‘PhA’’. We call such applications data terms,
or terms for short. A term is either a constant or an application of an n-ary constructor to n terms.

A FORMULA program corresponds to axioms about a set of terms K , called the knowledge of the program. Elements of K
are called facts. There are two ways to influence the knowledge. One way is to directly place facts in the logic program:

ΠTN
def
=

doc(1, ‘‘PhA’’). subOrg(‘‘PhA’’, ‘‘TN’’).
doc(2, ‘‘PhB’’). subOrg(‘‘PhB’’, ‘‘TN’’).

12 A. Nadas et al. / Science of Computer Programming () –

The program ΠTN contains four facts describing a few documents. When viewed as axioms about K , the program states that
terms doc(1, ‘‘PhA’’), subOrg(‘‘PhA’’, ‘‘TN ’’), doc(2, ‘‘PhB’’), and subOrg(‘‘PhB’’, ‘‘TN ’’) elements of K .

The second way to influence the knowledge is through rules. For example, the program Πaccess contains three rules. Each
rule behaves similarly to a universally quantified implication, where the left-hand side (LHS) of the operator ‘:-’ corresponds
the head of the implication and the right-hand side (RHS) corresponds to the body. Whenever there is a substitution of
variables for terms such that all terms of the RHS are facts, then the LHS must also be a fact for that same substitution.

4.1. Logical and execution semantics

Logic programs are more than just implications, because the only facts allowed in K are those explicitly stated in the
program (as in ΠTN) or those that are forced to exist by rules. Formally, this means: (1) Π⋆ contains additional formulas
to constrain the implications, and (2) the intended interpretation of Π⋆ is the least set K satisfying Π⋆ where every fact is
justified by rules. For example, the Clark Completion for Πaccess is:

Π⋆
access

def
=

∀id, x. isAcc(id, x) ∈ K ⇔

doc(id, x) ∈ K ∨

(∃y. isAcc(id, y) ∈ K ∧ subOrg(y, x) ∈ K) ∨

(∃y. isAcc(id, y) ∈ K ∧ subOrg(x, y) ∈ K).

The least set K satisfying Π⋆ and justifiable by rules is called the least model of the program, written lm(Π⋆). The class of
logic programs supported by FORMULA guarantees the existence of least models. Therefore the least knowledge sets corre-
sponding to the previous programs are:

lm(Π⋆
access) = {}.

lm(Π⋆
TN) =


doc(1, ‘‘PhA’’), subOrg(‘‘PhA’’, ‘‘TN ’’),
doc(2, ‘‘PhB’’), subOrg(‘‘PhB’’, ‘‘TN ’’)


.

lm((Πaccess ∪ ΠTN)⋆) =


isAcc(1, ‘‘PhA’’), isAcc(2, ‘‘PhA’’),
isAcc(1, ‘‘PhB’’), isAcc(2, ‘‘PhB’’),
isAcc(1, ‘‘TN ’’), isAcc(2, ‘‘TN ’’),
doc(1, ‘‘PhA’’), subOrg(‘‘PhA’’, ‘‘TN ’’),
doc(2, ‘‘PhB’’), subOrg(‘‘PhB’’, ‘‘TN ’’)

 .

ThoughΠaccess contains rules for computing transitive accessibility of documents, it does not contain any documents. There-
fore, the least model is empty. ΠTN contains only facts, but no axioms about accessibility, so its least model contains no
additional terms. Finally, the combination of the programs produces a more interesting model containing the transitive ac-
cessibility of pharmacy documents in the state of Tennessee. (An alternative formalization for CLP is obtained by extending
FOL with fixpoint operators [40].)

The primary operation on logic programs is the query operation. Let t[x⃗] be a data term, but with variables x⃗
def
= x1, . . . , xn

appearing within the term. The operation query(Π, t[x⃗]) returns all the facts in the least model of Π that are of the form
t[x⃗]:

query(Π, t[x⃗])
def
= {t[x⃗\s⃗] | t[x⃗\s⃗] ∈ lm(Π⋆)}.

The term t[x⃗\s⃗] is the term formed by replacing every variable xi by the data term si in t . For example:

query(Πaccess ∪ ΠTN , isAcc(x, x)) = {}.

query(Πaccess ∪ ΠTN , isAcc(x, ‘‘TN ’’)) =


isAcc(1, ‘‘TN ’’),
isAcc(2, ‘‘TN ’’)


.

query(Πaccess ∪ ΠTN , isAcc(1, x)) =

isAcc(1, ‘‘PhA’’),
isAcc(1, ‘‘PhB’’),
isAcc(1, ‘‘TN ’’)


.

Logic programs are also programs; they can be executed. Program execution is the application of rules to facts to produce
more facts. A program terminates when it reaches a fixpoint where all facts have been produced. Typically, execution is
triggered by a query operation, in which case the program may terminate as soon as the query is found to be satisfied for
some term. Thus, reasoning about the least model does not require translating the program into FOL. Instead it is sufficient
to execute the program.

4.2. Modeling and open world reasoning

FORMULA is logic programming tailored to formal modeling. It supports different types of specifications for formalizing
abstractions and defining instances of these abstractions. FORMULA domains contain data type declarations and LP rules

A. Nadas et al. / Science of Computer Programming () – 13

axiomatizing abstractions. For example, the program Πaccess would correspond to a domain axiomatizing document
accessibility across organizations. Unlike in other LP languages, domains typically do not contain facts, i.e. their least models
may be empty. This does not mean domains are useless. Instead, they are viewed as open world specifications. Later they will
be exposed to new facts and they will compute useful information.

An instance of an abstraction, such as a particular database of documents, is called amodel. (This is a different use of the
word ‘‘model’’ than its earlier use in ‘‘leastmodel’’.) Amodel is a logic program that only contains facts, like theΠTN program.
The semantics of a model is obtained by combining it with a domain, as in Πaccess ∪ ΠTN . Once a model is combined with its
domain, then queries can be evaluated: ‘‘Is document id accessible by x?’’, ‘‘Can x access any documents?’’. The dichotomy
of domains and models separates the fundamental ingredients of an abstraction from particular instances.

FORMULA carries this metaphor even further allowing new types of reasoning on domains:
Given domain D does there exist a model M where query(t[x⃗],D ∪ M) is non-empty?
This is a harder question to answer than standard query evaluation. We call this the open world query operation:

Definition 1 (Open World Query Operation). Given:

1. A program Π with data constructors Σ∆

def
= {f1, f2, . . . , fn},

2. Σp ⊆ Σ∆ a subset of the constructors, called the primitive constructors.
3. A term t[x⃗].

Then find a finite logic programM containing only facts where every fact uses only primitive constructors Σp and:

query(Π ∪ M, t[x⃗]) ≠ ∅.

We write queryowa(Π, Σp, t[x⃗]) for the open-world version of the query operation.

For instance, to find a database witnessing the isAcc property we may ask queryowa(Πaccess, {doc, subOrg}, isAcc(id, x)).
Notice that only {doc, subOrg} are primitive constructors. This constrains the search problem so that an isAcc fact cannot be
directly added to M . Instead, only doc and subOrg facts can be added to M , which in turn must cause the production of an
isAcc fact. An example of a model returned by this query is:

Πsol
def
= doc(0, ‘‘A’’). subOrg(‘‘A’’, ‘‘B’’).

FORMULA solves an open world query by constructing the satisfying model M . Because there may be infinitely many
possible models to consider, search is implemented by efficient forward symbolic execution of logic programs into the state-
of-the-art satisfiability modulo theories (SMT) solver Z3 [41]. As a result, specifications can include arithmetic, data types,
and variables ranging over infinite domains. Nonetheless, the method is constructive; it returns extensions of the program
witnessing satisfaction.

4.3. Applications to privacy policies

Logic programs and open-world reasoning fit naturally with privacy policies. Policies can be succinctly expressed as logic
programs [42,12]. Verification that the policy prevents anomalous access to sensitive information is equivalent to an open-
world query for which there is no solution. If a solution is found, then it serves as a counterexample showing the system
state where anomalous behavior is possible. Open-world queries can also show the relationships between policies: ‘‘Is there
a world where policy P1 is satisfied and P2 is not satisfied?’’. If this query has no solution then policy P1 implies P2 for all
possible subjects and objects. These ideas will be illustrated in the following sections.

5. The realization of semantic anchoring

This section is devoted to description of how themodels are mapped to the FORMULA language. Each syntactic construct
of FORMULA can be mapped to a well-defined mathematical structure presented in the previous section. This means that
when we create a mapping to FORMULA, indirectly we provide a mapping to mathematical constructs as well. Recall that
certain semantic anchoring has already been provided in themodeling environment. However, themapping is not complete
yet. (i) The graphically represented relations, parameters and the policies composed of them still need to be anchored.
(ii) The component templates are anchored to semantic templates. The template parameters of the semantic templatesmust
be resolved in the specialized templates. In order to introduce template parameters and their specialization, new keywords
have been introduced in themodeling environment on top of FORMULA code, namely, the bind and unique. They are resolved
by the mode-FORMULA mapping.

However, before we present howwe assign precise and formal semantics to these language elements, we summarize the
most important principles. These are the lessons that we learned from mapping several modeling languages to FORMULA,
and we strongly believe that it not only made it possible for us to create an efficient semantic anchoring for several mod-
eling languages, but also serves as an indispensable guide for others who try to map their model-based paradigms to CLP
languages.

14 A. Nadas et al. / Science of Computer Programming () –

5.1. The semantic gap

GME metamodels use class diagrams. This claim can be stated about most metamodeling tools and environments. FOR-
MULA has domains and terms that can have attributes and references to each other. The similarity is immediately obvious:
wemapmetamodels to domains, and classes to terms.We only need to write a model compiler that takes themetamodel of
a language, and creates a FORMULA domain for it.We need to pay attention to certain constructs, such as FORMULA supports
polymorphism by its union construct (A = B + C means that the term A can be either B or C) but not attribute inheritance,
therefore, it must be resolved. Oncewe have completed thismodel compiler, an arbitrarymodeling language can bemapped
to FORMULA, we do not have to provide customized mappings.

If wewanted to use FORMULA for a formal specification only, using the generic GME-FORMULA compiler for wouldwork.
This is exactly how the first version of our policy environment was realized. However, in this case we wanted to reason
about the policies in our FORMULA domain, and this became extremely inefficient. In other words, FORMULA is not only a
specification language, but also an execution environment, offering a more descriptive and stronger language on top of the
Z3 SMT solver. In general, undecidable problems can be described in FORMULA, but FORMULAmay be unable to solve them.
Therefore, we had to design the mapping very carefully to have an acceptable execution time. Starting from the simplest
and generic GME-FORMULA mapping outlined above, only the third version of our mapping produced satisfactory results.

In summary, it is quite tempting to perceive the gap between a domain-specific language and FORMULA as that of
syntactic nature, but in fact it is deeply semantic. This means that not only a syntactic transformation must be performed
between the two tools, but a semantic translation as well. Fundamentally, there are two distinct places to perform this
transformation: inside or outside FORMULA. Inside FORMULA, the solution is using transformation provided by the tool.
However, we have taken the other approach, since themapping includes processing new keywords, and only future versions
of FORMULA will support more extensive string operations such as the ones needed for parsing. In this case we need to
describe the mapping precisely. Below we provide the formalization of this mapping.

5.2. Semantic mapping

The semantic mapping involves three main steps. (i) We need to map the graphical models to logic programming con-
structs. This means specializing the templates, mapping them to logic programs, and creating the terms based on the ontol-
ogy models. (ii) In order to cover the semantic gap discussed in the previous section, we introduced a few new keywords in
addition to the ones provided by FORMULA. These keywords must also be resolved. Although this step seems insignificant,
we believe that it illustrates a rather unique and important technique to elegantly resolve the semantic gap. Thenwe need to
resolve the specialized parameters within the FORMULA code. (iii) Defining the search space (a partial model in FORMULA)
with the entities (facts) over which the logic program must be solved.

Recall that our policy language is template-based. This means that the policies are specified by generic templates
(‘‘relations’’) specialized by concrete parameters. Quite similarly to C++ and other general purpose programming languages,
once the templates are specialized with different parameters, theymust be treated as separate, non conflicting entities. This
is exactly how we need to map the policies.

As a first approach, we could map relations to FORMULA queries. However, this solution does not lead to a correct
mapping. The reason is that the queries with the same name in FORMULA denote OR relation between the two. In fact,
it means that the search engine can try either of them to find a solution. This implies that the different specializations
interfere with one another, which clearly violates our initial rule about separate entities. This problem, however, can easily
be resolved with a simple name mangling. Therefore, each specialized relation is mapped a FORMULA query with a unique
name. The relations can either specify logical operation between two queries (e.g. OR or AND relationship), or specialize
the relations. The mapping of the former one is the appropriate combination of the queries, while the latter is resolved by
substituting the parameters in the FORMULA code.

An example semantics for our case study is depicted in Fig. 13.
The canRequest factmust be of type Requestor , which is a template parameter. Similarly, canRequestOn and canRequestObj

are facts of type Subject and Object , respectively. After specialization, Requestor is bound to External_Provider , whereas
Subject and Object will become Patient and PharmacyRecord, respectively in our example. These entities must exists.
Constraint is not a fact, thus no binding is necessary. After specialization it will become truism in Tennessee, where there is
no additional constraints, and, for California, a query that ensures the treatment relationship. This query is also specified as
an instantiated template.

In order tomake the specialization simple to express, we introduced the bind keyword. This keyword can bind a template
parameter to a concrete term. Again, we need to consider possible interference. In FORMULA, termdefinitions are global, and
a termwith the same values always considered the same. In order to avoid the interference, the bind keyword also introduces
an ID unique within a semantic anchoring. If we create a function within a semantic anchoring element, we might want to
isolate in order not to interfere with other specializations. This can be achieved by the unique keyword. Again, we emphasize
that both of the discussed keywords are not FORMULA keywords, they are resolved at generation time.

The generated semantics after specialization for the Tennessee pharmacy policy is presented in Fig. 14.
The long names are due to the name mangling discussed above. The first query (...RecordRequest) is for the policy, the

second one (...TNPharmPolicy) is for the constraint. Truism (defined as true = true) is the binding No Constraint for the

A. Nadas et al. / Science of Computer Programming () – 15

Fig. 13. The FORMULA semantics of the policy template.

Fig. 14. The FORMULA code for the Tennessee pharmacy policy generated from the policy template semantics.

Constraint parameter. The IDs have been generated automatically. The body of statePolicyRequest is the instantiation of the
template StatePolicy as discussed above.

Finally, we have to generate the search space for the logic program. This is the most important step. We had multiple
options at this point. Again, these options are closely related to the semantic gap. FORMULA is the most efficient, when it
must resolve unknown attributes, as opposed to the case when it needs to add terms to the search space. The nature of
the privacy policies are such that they require the existence of a certain document, relationship, or a qualified stakeholder.
Instead of defining the conditions for the existence of certain terms, the search space contains all the possible terms that
can be available. Each term has a Boolean attribute that marks the existence of the term. If it is true, the term is considered
existing, otherwise it is not counted as existing. This appears in the constraint definition, where the exists property of a term
can be included in a constraint. This not only results in more efficient execution, but also makes the code more reliable. In
the following, we show how the pharmacy record request policy can be translated to terms and logic program.

5.3. Formalization of semantic mapping

When implementing the semantic mapping, we have used our recently developed semantic anchoring method [43]. In
this, we distinguish the production workflow, and the formal specification workflow. These workflows are created based
on the following process. (i) First, the specification workflow is created, i.e. the semantic mapping is specified in FORMULA.
(ii) Since the tool is able to execute the specification, we first test our rules—this helps to filter the trivial mistakes, and the
developer performs unit tests. At this point, there could still be both conceptual and implementation errors. (iii) Therefore,
we specify formal validation requirements for the mapping and additional constraints in the target domain. (iv) We use the
bounded model checking functionality of FORMULA: we try to make the tool generate objects in the semantic domain that
violates the constraints in order to find conceptual and implementation errors. (v) Then, based on the formal specification,
we create the production workflow. The reason for the last step is twofold: (i) we can achieve better performance with
imperative languages, and (ii) FORMULA is not open source,which is a prerequisite inmany of our projects. Undoubtedly, the
this step might introduce additional errors. However, we can still run the executable semantic specification individually for
safety critical models. In the following, we illustrate this process with excerpts from the original FORMULA transformation,
which can be found at http://tinyurl.com/sharps-formula-analysis.

In our model translation scenario, the most complicated part is to transform the specialized templates.
1 domain LogicQueries
2 {
3 primitive Query ::= (name:String , objectID:String).
4 primitive AtomicQuery ::= (expression:String).

6 Queries ::= Query + AtomicQuery.

8 OpOrQuery ::= Queries + Op.

http://tinyurl.com/sharps-formula-analysis
http://tinyurl.com/sharps-formula-analysis
http://tinyurl.com/sharps-formula-analysis
http://tinyurl.com/sharps-formula-analysis

16 A. Nadas et al. / Science of Computer Programming () –

10 primitive Un ::= (op: UnOp , arg: Queries).
11 primitive Bin ::= (op: BinOp , arg1: Queries , arg2: Queries).
12 primitive Decompose::= (arg1: Queries , arg2: OpOrQuery).

15 UnOp ::= { Not }.
16 BinOp ::= { Or, And }.
17 Op ::= Un + Bin.

19 ...
20 notResolved := q is Query , no Decompose(q,_).
21 conforms := !notResolved .
22 }

Listing 1. Logic queries domain.

Listing 1 displays the semantic domain, which represents the logical hierarchy of logic queries. This illustrates the power
of FORMULA that it can model its own query structure. The queries can be composed of other queries or atomic queries.
The actual description of the atomic queries are processed as described earlier in Section 5.2. We formalized this translation
with regular expressions. Since they are axioms – they define our new keywords – we do not need to validate them with
bounded-model checking. Therefore, we treat the expression of an AtomicQuery as an uninterpreted string from the logic
program’s perspective. The queries are connected with unary operators (NOT) or binary operators (OR, AND). The queries
must be resolved by either other queries or an atomic query. This is expressed by the notResolved query. Note that much
more constraints can be added to check the solution. Furthermore – we did not apply this technique in this project – we
can automatically create a correspondence/tracing domain during the transformation to express and check even richer
verification properties on the semantic domain.

As a second step, we have to create a FORMULA representation of the GME metamodel and model. We have developed
a tool for this task. Since this is involves only changing the representation of the metamodel/model, it can be thought of as
a simple GME exporter. Since it has the same concepts as the GME metamodel, we do not list this domain. The next step is
the transformation, which is presented in Listing 2

2 transform T from in1::Policy_Ontology to out1::ASD
3 {
4 ...
5 ObjectRelationships ::= (or:ObjectRelationship , parent:PolicyOrConstraint).
6 ObjectRelationshipFill ::= (or:ObjectRelationship , fill:Fill_Source).
7 ObjectRelationshipSemanticAnchoring ::= (or:ObjectRelationship , semanticExpression:String).
8 ...

10 out1.Query(parent.name , parent.objectID),
11 out1.Query(name , objectID),
12 Decompose(out1.Query(name , objectID), AtomicQuery(semanticExpression)),
13 Decompose(out1.Query(parent.name , parent.objectID), out1.Query(name , objectID)) :-
14 ObjectRelationships(instanceOr , parent),
15 instanceOr is in1.ObjectRelationship(name , _, objectID , _),
16 no ObjectRelationshipFill(instanceOr , constraint),
17 constraint is in1.Constraint ,
18 ObjectRelationshipSemanticAnchoring(instanceOr , semanticExpression).

20 ...
21 }

Listing 2. Formalized semantic mapping.

The transformation starts with definitions: these are similar to primitives, except that they will be instantiated by
the transformation engine. They can be thought of as temporary maps used during the transformation only. These are
automatically filled out by the rules not listed here. The rather complex rule is better to be analyzed from the :- sign. The
right hand side (RHS) of the rule is a logic expression, which must be matched. For each match, the matched variables
are substituted in the left-hand-side (LHS) expression, and it a fact is generated for by logic program. In our example, RHS
matches allObjectRelationships (two hierarchical concepts: a policy template and its attached FormulaSemantics) in the input
model in1 that do not have constraints attached. From theirmatchedparameters, twoqueries are created: a generalQuery for
the template, and anAtomicQuery for the FormulaSemantics. After completing and unit testing the transformation,we can use
FORMULA to solve the transformation for a bounded input model to check if the transformation is able to generate models
that contradict to the verification constraints—in our example, it generates queries that do not resolve to atomic queries. It
can be either fixed by adding well-formedness constraints to the domain/metamodel, or by correcting the transformation.

A. Nadas et al. / Science of Computer Programming () – 17

Fig. 15. The policy analysis tool and its output for the use case policies.

6. Analyzing policies

Since we validate the policies on a mathematical basis, we can reason about the policy design. If the validation of the
policies are performedwith the same, formally underpinned infrastructure,we can certify that the policy validation is correct
by design, no additional verification is necessary.

Since we provided a formal anchoring of the policies, the verification by a logic programming tool is rather straightfor-
ward: it retrieves true or false for a specific data set passed to query certain information. Our environment can providemuch
more: it is able to compare two or more policies. This section describes the latter functionality provided uniquely by our
tool set.

With the completed semantic anchoring of the policy templates, the formal policy models can be analyzed. To be able to
analyze them, all the information that the analysis tool requires must be extracted and compiled from the models. GME
provides an interpreter framework that helps in traversal and composition of the components of the models. A simple
interpreter was developed that is able to perform this composition and run the analysis as described in Section 5.2.

To demonstrate how the reasoning capabilities of the PATRN framework on the formal policies using FORMULA work,
we take the two policies from Section 3.2. Recall that they differ from each other only in how restrictive they are on the
disclosures. Specifically the policy from California is stricter than the Tennessee one. The interpreter has a simple UI (Fig. 15)
where the users can select policies into two groups that are compared to each other during the analysis. In our example,
Policy Group A is the Tennessee policy and the California policy will be assigned to Policy Group B. After the analysis has been
performed the results are displayed under the group assignments.

To interpret the results of the analysis, the inner mechanisms of the search algorithm of FORMULA needs to be
understood. To analyze the policy sets for entailment, the two sets are injected into FORMULA with a presumption that
one of the two sets implies the other. This analysis is done with the two permutations: A implies B and B implies A. FORMULA
tries to find a counterexample that does not satisfy the presumptions. In order to find contradictions, the presumptions
must be negated. The originally presumed implication is correct when terms are found that does not satisfy the negated
presumption. From the answers of the analysis of the two negated permutation, it can deducted whether the policy set A
implies policy set B, set B implies A, sets A and B are equivalent or if sets A and B are non-comparable. In the example shown
in Fig. 15, the analysis found contradicting terms for negated A implies B but found no contradicting terms for negated B
implies A. The answer is that A implies B, which shows that the California policy ismore restrictive then the Tennessee policy.

7. Validation

The Policy Modeling environment presented in this paper is currently used in several projects, including ones that are
already ongoing and ones that are in the phase of initial development. All these projects are related to the development
of Health Information Exchange systems with different goals and areas of coverage. Below we present two of the most
significant cooperations that leverage our policy modeling to provide its functionality.

18 A. Nadas et al. / Science of Computer Programming () –

Policy enforcement. The first cooperation is a health information exchange effort required as part of the formation of a
clinically integrated network. The clinically integrated network collectively provides care for approximately 2million people
receiving care throughout central Tennessee. The network will consist of at five different hospital systems and numerous
ambulatory care centers. Over 1500 physicians and a large number of ancillary staff will access clinical data. Almost 100
care coordinators and other professionals will be managing transitions in care and chronic illness through a $19m CMS
Health Care Innovation Award. Each organization has different organizational structures, electronic health care systems,
and policies. Yet of necessity this network must exchange data to measure the quality of care and to improve care across
organizational boundaries. The need for consistent care coordination, the complexity of data access scenarios and policies
are addressed by policy modeling, validation, and enforcement systems.

Because institutional policies can vary, each policy needs to bemodeled and compared in an effort to unify these policies
and assure policy execution consistent with norms set by the overarching clinically integrated network organization. As
policies are added or changed, they will have to be checked to ensure they do not conflict with policies already in operation.

Using the policy modeling approach we were able to demonstrate to the stakeholders the unified policy set and grantee
that the same policy will be enforced at run-time. To enable the enforcement of the same policies in different systems we
leverage the flexibility provided by semantic anchoring.We have implemented the semantics of the templates in FORMULA,
ILOG and Drools. The unified set contains seven high level policies containing multiple constraints for disclosure and access
of electronically stored data. These policies and constraints were constructed using twelve different templates, with each
template assigned with analysis semantics in FORMULA and execution semantics in both ILOG and Drools. The ontology
that is used to create the policies and templates has around 250 concepts with around 560 inheritance relation connection
between the elements.

Use case analysis with policies. The same techniquewill be applied to ensure that specialized laboratory and knowledge
management services supplied to referring physicians are applied consistently. In this use case the policy modeling enables
us to provide assurances that the planned new business relation with the external labs falls under the current institutional
and state policies for treatment. To be able to achieve or goals we have developed a small use-casemodeling languagewhere
we were able to describe the information flow required to the newly added business relation. The use case language has its
semantics written in FORMULA with the models also translated into FORMULA. To fuse the policy models with use cases in
FORMULA, we have developed use-case test semantics – also written in FORMULA – for a subset of the templates already
developed for the HIE project. The semantic anchors for all the used templates together takes only around 60 lines of code,
the generated fused analysis FORMULAmodel, however, has 350 lines of code fromwhich the generated policy rules take up
a roughly 100 lines. In this case the number of policies tested against the use casewas fairly limited it still shows a significant
reduction in the code base that needs to be maintained.

Our collaborators previously had policies in textual programs written by software engineers, especially Java and various
script languages. Our environment facilitates users of various levels of expertise—none of them requires software engineers.
The scenario demanding the most expertise requires writing very simple logic programs: stating the existence of ontology
entities. The template mechanism allows users with no programming expertise to write policies. Following our case study,
having the state policy template ready, no programming skills are needed to specify the Tennessee and California pharmacy
policy. On this level, the only required knowledge is using GME. It has been proven over decades that domain experts of
various – many times non-engineering – background can learn this without difficulties.

During the course of the two highlighted projects we were working in a very diverse team that included on one end
of the spectrum hospital decision makers, mid-level managers, domain experts and undergraduate students interns and
computer scientist on the other. While all the health care professional were part of the informatics core and some of them
evenhad formal computer science training theywere not programmers. The team include student interns including students
studying computer sciencewith someprogramming knowledge and students fromoutside of engineering having knowledge
on philosophy and, in an instance, economics. In Table 2 we show how our team of diverse individuals were able to divide
and conquer the formalization problem.

It is really hard to measure how simpler the formal description of policies have become by applying Model-Based
Engineering as opposed to formal textual specification languages, since it varies with the individuals. While working on the
mentioned projects, we have observed that computer scientists and programmers prefer textual representations. On the
other hand, non-computer scientist domain experts feel more comfortable with graphical tools. Our experience supports
the claim that MDE is a tool for domain experts who are not good at programming and learning new textual languages, but
are used to the user interface of the modern computer. We believe that the real success of MDE in our projects is similar to
that of the graphical user interface. The question is not if a user or is able to click or write a script quicker. It simply opens the
world of computer automation – including formal problem description and analysis – to people who could not have access
to it otherwise.

Our solution is not only scalable in the level of expertise. The size of policy specifications are by far not the most de-
manding for GME. For example, Cyber-Physical System models such as infantry vehicle models require much more model
elements. GME has successfully met the demands of these applications. In case of the DSML used by the PATRN tool, the
GME type-instance mechanism makes larger policy models a well-organized a conceivable by humans. The computational
performance is provided by FORMULA. In general the algorithm is exponential with the number of facts that can exist. How-

A. Nadas et al. / Science of Computer Programming () – 19

Table 2
Tasks related to policy formalization and the expertise they require, including a brief explanation on how it was accomplished in the projects.

Task Required expertise Expertise used in projects

Extracting and collecting policies Knowledge on policies and legal frame-
works

The collected and extracted policies where provided to us by our
cooperators that includes institutional lawyers and sociologists
researching the effect of regulations.

Translating policies into formal
models

Limited domain knowledge, knowledge of
the representation language

After the initial development and testing of the template
languages the task were transferred to the project interns and
domain experts, none of them computer scientists.

Creating formal templatemodels In-depth domain knowledge and knowl-
edge on creating modeling languages

This task were done by the authors for the mentioned projects.

Creating formal semantics for
templates

In-depth knowledge of the target environ-
ment and in depth knowledge of the mod-
eling language.

This task were done by the authors for the mentioned projects.

Model curation and quality as-
surance

Some knowledge on the representation
and knowledge on the formalized policies.

The task of curation was iteratively performed by a subgroup of
our project team that included modelers of the policies, which
in most parts were the project interns, computer scientists with
architectural knowledge and domain experts.

ever, in case of pairwise comparison, this number can be considered a constant, which makes the comparison polynomial.
Thus, ordering the policies along a lattice makes the comparisonmore efficient for our typical consistency analysis problem.

8. Conclusion

We have discussed amodel-integrated authoring environment that supports creating and analyzing privacy policies. We
have addressed the following challenges. (i) The policies are described using legal and medical concepts and terminology.
(ii) Both the description of the policies and the inference about them requires formal representation of policies written in
human languages. (iii) Besides the component of the domain-specific environment, the tool is required to be fully automated
in order for legal and medical experts to use it.

The presentedmodel-integrated computing environment and approach delivers novelties in several areas. By separating
the models and semantics it enables separation of concerns in modeling the formal policies and integrating the policies
into any formal framework using semantic anchoring. With this divide and conquer approach the creation of formal policy
models became easier and less error prone because of the correct by construction principle that templates enforce. The
template formalisms also enable easier use of NLP in the future as the templates can provide both structure and context
for the processing. With the use of NLP the creation of the policy models will be further simplified. On the other end of the
divide and conquer the integration of the policy model into a formal framework has also been simplified using semantic
anchoring. The implementers of the semantics for the templates do not have to have deep domain knowledge to be able
create correct semantics. The knowledge they need to have is on the template language and knowledge of the system or
framework the policies are compiled into. This separation also enables the policy experts and semantic developers to work
concurrently and deliver end-to-end formal models quicker.

In order to further improve the applicability and usability of the PATRN framework we plan to incorporate a few changes
and additions. To further improve the reusability of the policy models a policy model repository is in development. This
repository will enable the sharing, reuse and crowd sourcing the policy templates as well as the policy models. We are also
in the process to extend the user base of the PATRN framework by factoring some of the functionalities out of the GME
environment into standalone products. This refactoring will enable more custom authoring and editing tools tailored to the
needs of the policy authors.

This research and development effort is the part of the SHARPS (Strategic Health IT Advanced Research Projects) program
with several participants, including hospitals and legal advisors. The release of the environment has already been completed,
and currently tested by the SHARPS partners. The long term expectation is that this information system-independent policy
authoring environment will be used by policy officials to compare policies between institutions, and legal experts for the
law harmonization between the levels of enforcement (federal, state, institution). Also, efforts have been made to integrate
the policy verification process to health information systems to achieve correctness by design.

Acknowledgments

We would like to thank the following people for their help with the research and engineering work. We would like to
thank Dr. Mark E. Frisse for his insight on HIEs and the state of the Health Care in general. We would like to thank Janos L.
Mathe for his help on the OWL-based Ontology language.

20 A. Nadas et al. / Science of Computer Programming () –

The work presented in this paper was funded through National Science Foundation (NSF) TRUST (The Team for Research
in Ubiquitous Secure Technology) Science and Technology Center Grant Number CCF-0424422 and Office of National Coor-
dinator for Health Information Technology (ONC) Grant Number HHS 90TR0003/1. Its contents are solely the responsibility
of the authors and do not necessarily represent the official views of the HHS or NSF.

References

[1] H. Nissenbaum, Privacy as contextual integrity, Washington Law Review 79 (2004) 119–158.
[2] A. Barth, A. Datta, J.C. Mitchell, H. Nissenbaum, Privacy and contextual integrity: framework and applications, in: Proceedings of the 2006 IEEE

Symposium on Security and Privacy, IEEE Computer Society, Washington, DC, USA, 2006, pp. 184–198. http://dx.doi.org/10.1109/SP.2006.32.
[3] P.E. Lam, J.C. Mitchell, S. Sundaram, A formalization of HIPAA for a medical messaging system, in: Proceedings of the 6th International Conference on

Trust, Privacy and Security in Digital Business, TrustBus’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 73–85.
[4] A. Barth, J.C. Mitchell, J. Rosenstein, Conflict and combination in privacy policy languages, in: Proceedings of the 2004 ACM Workshop on Privacy in

the Electronic Society, WPES’04, ACM, New York, NY, USA, 2004, pp. 45–46. http://dx.doi.org/10.1145/1029179.1029195.
[5] M.C. Tschantz, D.K. Kaynar, A. Datta, Formal verification of differential privacy for interactive systems, CoRR abs/1101.2819.
[6] D. Garg, L. Jia, A. Datta, A logical method for policy enforcement over evolving audit logs, CoRR abs/1102.2521.
[7] A. Barth, J. Mitchell, A. Datta, S. Sundaram, Privacy and utility in business processes, in: Computer Security Foundations Symposium, CSF’07. 20th IEEE,

2007, 2007, pp. 279–294. http://dx.doi.org/10.1109/CSF.2007.26.
[8] A. Datta, J. Franklin, D. Garg, D. Kaynar, A logic of secure systems and its application to trusted computing, in: 30th IEEE Symposium on Security and

Privacy, 2009, 2009, pp. 221–236. http://dx.doi.org/10.1109/SP.2009.16.
[9] A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia, D.K. Kaynar, A. Sinha, Understanding and protecting privacy: formal semantics and principled

audit mechanisms, in: S. Jajodia, C. Mazumdar (Eds.), ICISS, in: Lecture Notes in Computer Science, vol. 7093, Springer, 2011, pp. 1–27.
[10] P.E. Lam, J.C. Mitchell, A. Scedrov, S. Sundaram, F. Wang, Declarative privacy policy: finite models and attribute-based encryption, in: Proceedings of

the 2nd ACM SIGHIT International Health Informatics Symposium, IHI’12, ACM, New York, NY, USA, 2012, pp. 323–332.
http://dx.doi.org/10.1145/2110363.2110401.

[11] D. Basin, F. Klaedtke, S. Müller, Policy monitoring in first-order temporal logic, in: T. Touili, B. Cook, P. Jackson (Eds.), Computer Aided Verification,
in: Lecture Notes in Computer Science, vol. 6174, Springer, Berlin, Heidelberg, 2010, pp. 1–18.

[12] M.Y. Becker, C. Fournet, A.D. Gordon, SecPAL: design and semantics of a decentralized authorization language, Journal of Computer Security 18 (4)
(2010) 619–665.

[13] R. Craven, J. Lobo, E. Lupu, J. Ma, A. Russo, M. Sloman, A. Bandara, A formal framework for policy analysis, Imperial College London, Tech. Rep.
[14] G.Hemingway,H. Su, K. Chen, T. Koo, A semantic anchoring infrastructure for the design of embedded systems, in: Computer Software andApplications

Conference, COMPSAC 2007, 31st Annual International, vol. 1, 2007, pp. 287–294. http://dx.doi.org/10.1109/COMPSAC.2007.39.
[15] Y. Lu, A. Cicchetti, S. Bygde, J. Kraft, C. Norstrom, Transformational specification of complex legacy real-time systems via semantic anchoring,

in: Computer Software and Applications Conference, COMPSAC’09. 33rd Annual IEEE International, Vol. 2, 2009, 2009, pp. 510–515.
http://dx.doi.org/10.1109/COMPSAC.2009.184.

[16] D. Balasubramanian, E. Jackson, Lost in translation: forgetful semantic anchoring, in: Automated Software Engineering, ASE’09. 24th International
Conference on IEEE/ACM, 2009, 2009, pp. 645–649. http://dx.doi.org/10.1109/ASE.2009.83.

[17] D. Harel, B. Rumpe, Meaningful modeling: what’s the semantics of ‘‘semantics’’? Computer 37 (2004) 64–72. http://dx.doi.org/10.1109/MC.2004.172.
[18] Q. Liu, L. Dou, Z. Yang, A unified operational semantics for UML in situation calculus, in: G. Shen, X. Huang (Eds.), Advanced Research on Computer

Science and Information Engineering, in: Communications in Computer and Information Science, vol. 153, Springer, Berlin, Heidelberg, 2011,
pp. 484–490.

[19] M. Wermelinger, T. Margaria (Eds.), Fundamental Approaches to Software Engineering, 7th International Conference, FASE 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2004 Barcelona, Spain, March 29–April 2, 2004, Proceedings, in: Lecture Notes
in Computer Science, vol. 2984, Springer, 2004.

[20] P. Cousot, Formal verification by abstract interpretation, in: A. Goodloe, S. Person (Eds.), NASA FormalMethods, in: Lecture Notes in Computer Science,
vol. 7226, Springer, 2012, pp. 3–7.

[21] S. Weirich, D. Vytiniotis, S.L.P. Jones, S. Zdancewic, Generative type abstraction and type-level computation, in: T. Ball, M. Sagiv (Eds.), POPL, ACM,
2011, pp. 227–240.

[22] C.A. Gunter, Semantics of Programming Languages: Structures and Techniques, MIT Press, Cambridge, MA, USA, 1992.
[23] K.R.M. Leino, Dafny: an automatic program verifier for functional correctness, in: E.M. Clarke, A. Voronkov (Eds.), LPAR (Dakar), in: Lecture Notes in

Computer Science, vol. 6355, Springer, 2010, pp. 348–370.
[24] K. Chen, J. Sztipanovits, S. Neema, Toward a semantic anchoring infrastructure for domain-specific modeling languages, in: Proceedings of the 5th

ACM international conference on Embedded software, EMSOFT’05, ACM, New York, NY, USA, 2005, pp. 35–43.
[25] Y. Gurevich, Evolving algebras: an attempt to discover semantics, 1993.
[26] A. Gargantini, E. Riccobene, P. Scandurra, A semantic framework for metamodel-based languages, Automated Software Engineering 16 (2009)

415–454. http://dx.doi.org/10.1007/s10515-009-0053-0.
[27] K. Chen, J. Sztipanovits, S. Neema, Compositional specification of behavioral semantics, in: Proceedings of the Conference on Design, Automation and

Test in Europe, DATE’07, EDA Consortium, San Jose, CA, USA, 2007, pp. 906–911.
[28] A. Pan, B. Bryant, Denotational semantics-directed compilation using prolog, in: Applied Computing, 1990, Proceedings of the 1990 Symposium on,

1990, pp. 122–127. http://dx.doi.org/10.1109/SOAC.1990.82152.
[29] D. McGuinness, F. Van Harmelen, et al. OWL web ontology language overview, W3C recommendation 10.2004-03 (2004).
[30] E.K. Jackson, J. Sztipanovits, Formalizing the structural semantics of domain-specific modeling languages, Software and Systems Modeling 8 (2009)

451–478. http://dx.doi.org/10.1007/s10270-008-0105-0.
[31] E.K. Jackson, D. Seifert, M. Dahlweid, T. Santen, N. Bjørner, W. Schulte, Specifying and composing non-functional requirements in model-based

development, in: A. Bergel, J. Fabry (Eds.), Software Composition, in: Lecture Notes in Computer Science, vol. 5634, Springer, Berlin, Heidelberg, 2009,
pp. 72–89.

[32] E.K. Jackson, T. Levendovszky, D. Balasubramanian, Reasoning about metamodeling with formal specifications and automatic proofs, in: J. Whittle,
T. Clark, T. Kühne (Eds.), MoDELS, in: Lecture Notes in Computer Science, vol. 6981, Springer, 2011, pp. 653–667.

[33] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomasson, G. Nordstrom, J. Sprinkle, P. Volgyesi, The generic modeling environment, in:
Workshop on Intelligent Signal Processing, Budapest, Hungary, 2001.

[34] J. Pritts, S. Lewis, R. Jacobson, K. Lucia, K. Kayne, Report on state law requirements for patient permission to disclose health information, RTI
International report.

[35] O. Lassila, R. Swick, Resource description framework (RDF) model and syntax, World Wide Web Consortium, http://www.w3.org/TR/WD-rdf-syntax.
[36] A. Ledeczi, M. Maroti, A. Bakay, G. Nordstrom, J. Garrett, C. Thomasson, J. Sprinkle, P. Volgyesi, GME 2000 users manual (v2.0), December 2001.
[37] G.K. Savova, J.J. Masanz, P.V. Ogren, J. Zheng, S. Sohn, K.C. Kipper-Schuler, C.G. Chute, Mayo clinical text analysis and knowledge extraction system

(ctakes): architecture, component evaluation and applications, Journal of the American Medical Informatics Association 17 (5) (2010) 507–513.
http://dx.doi.org/10.1136/jamia.2009.001560.

http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref1
http://dx.doi.org/doi:10.1109/SP.2006.32
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref3
http://dx.doi.org/doi:10.1145/1029179.1029195
http://abs/1101.2819
http://abs/1102.2521
http://dx.doi.org/doi:10.1109/CSF.2007.26
http://dx.doi.org/doi:10.1109/SP.2009.16
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref9
http://dx.doi.org/doi:10.1145/2110363.2110401
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref11
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref12
http://dx.doi.org/doi:10.1109/COMPSAC.2007.39
http://dx.doi.org/doi:10.1109/COMPSAC.2009.184
http://dx.doi.org/doi:10.1109/ASE.2009.83
http://dx.doi.org/doi:10.1109/MC.2004.172
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref18
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref19
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref20
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref21
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref22
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref23
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref24
http://dx.doi.org/doi:10.1007/s10515-009-0053-0
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref27
http://dx.doi.org/10.1109/SOAC.1990.82152
http://dx.doi.org/doi:10.1007/s10270-008-0105-0
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref31
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref32
http://www.w3.org/TR/WD-rdf-syntax
http://dx.doi.org/doi:10.1136/jamia.2009.001560

A. Nadas et al. / Science of Computer Programming () – 21

[38] O. Bodenreider, The unified medical language system (UMLS): integrating biomedical terminology, Nucleic Acids Research 32 (suppl 1) (2004)
D267–D270. http://dx.doi.org/10.1093/nar/gkh061.

[39] J. Jaffar, M.J. Maher, K. Marriott, P.J. Stuckey, The semantics of constraint logic programs, Journal of Logic Programming 37 (1–3) (1998) 1–46.
[40] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming, ACM Computing Surveys 33 (3) (2001) 374–425.
[41] L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: C.R. Ramakrishnan, J. Rehof (Eds.), TACAS, in: Lecture Notes in Computer Science, vol. 4963,

Springer, 2008, pp. 337–340.
[42] Y. Gurevich, I. Neeman, DKAL: distributed-knowledge authorization language, in: CSF, IEEE Computer Society, 2008, pp. 149–162.
[43] G. Simko, T. Levendovszky, S. Neema, E. Jackson, T. Bapty, J. Porter, J. Sztipanovits, Foundation for model integration: semantic backplane, in:

Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
IDETC/CIE, 2012, pp. 12–15.

http://dx.doi.org/doi:10.1093/nar/gkh061
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref39
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref40
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref41
http://refhub.elsevier.com/S0167-6423(13)00124-X/sbref42

	A model-integrated authoring environment for privacy policies
	Introduction
	Background and related work
	PATRN: the MDE tool for formal policy models
	PATRN introduction
	Use case: state policies for releasing medication history
	Ontologies
	Policy patterns: the policy templates
	Template specialization
	Anchoring denotational or operational semantics to the templates
	Lessons learnt from modeling real-life policies

	Introduction to CLP and open world reasoning
	Logical and execution semantics
	Modeling and open world reasoning
	Applications to privacy policies

	The realization of semantic anchoring
	The semantic gap
	Semantic mapping
	Formalization of semantic mapping

	Analyzing policies
	Validation
	Conclusion
	Acknowledgments
	References

