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Abstract—We show in this paper how several proposed Strong
Physical Unclonable Functions (PUFs) can be broken by numer-
ical modeling attacks. Given a set of challenge-response pairs
(CRPs) of a Strong PUF, our attacks construct a computer
algorithm which behaves indistinguishably from the original PUF
on almost all CRPs. This algorithm can subsequently impersonate
the PUF, and can be cloned and distributed arbitrarily. This
breaks the security of almost all applications and protocols that
are based on the respective PUF.

The PUFs we attacked successfully include standard Arbiter
PUFs and Ring Oscillator PUFs of arbitrary sizes, and XOR
Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward
Arbiter PUFs of up to a given size and complexity. The attacks
are based upon various machine learning techniques, including
a specially tailored variant of Logistic Regression and Evolution
Strategies.

Our results were obtained on a large number of CRPs
coming from numerical simulations, as well as four million CRPs
collected from FPGAs and ASICs. The performance on silicon
CRPs is very close to simulated CRPs, confirming a conjecture
from earlier versions of this work. Our findings lead to new
design requirements for secure electrical PUFs, and will be useful
to PUF designers and attackers alike.

Index Terms—Physical Unclonable Functions, Machine Learn-
ing, Cryptanalysis, Physical Cryptography

I. INTRODUCTION

A. Motivation and Background

Electronic devices are now pervasive in our everyday life.

They are an accesseible target for adversaries, which raises

a host of security and privacy issues. Classical cryptography

offers several measures against these problems, but they all

rest on the concept of a secret binary key: It is assumed that

the devices can contain a piece of information that is, and

remains, unknown to the adversary. Unfortunately, it can be

difficult to uphold this requirement in practice. Physical attacks

such as invasive, semi-invasive, or side-channel attacks, as well

as software attacks like API-attacks and viruses, can lead to
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key exposure and full security breaks. The fact that the devices

should be inexpensive, mobile, and cross-linked aggravates the

problem.

The described situation was one motivation that led to the

development of Physical Unclonable Functions (PUFs). A

PUF is a (partly) disordered physical system S that can be

challenged with so-called external stimuli or challenges Ci,

upon which it reacts with corresponding responses termed

RCi
. Contrary to standard digital systems, a PUF’s responses

shall depend on the nanoscale structural disorder present in the

PUF. This disorder cannot be cloned or reproduced exactly,

not even by its original manufacturer, and is unique to each

PUF. Assuming the stability of the PUF’s responses, any PUF

S hence implements an individual function FS that maps

challenges Ci to responses RCi
of the PUF.

Due to its complex and disordered structure, a PUF can

avoid some of the shortcomings associated with digital keys.

For example, it is usually harder to read out, predict, or derive

its responses than to obtain the values of digital keys stored in

non-volatile memory. This fact has been exploited for various

PUF-based security protocols. Prominent examples include

schemes for identification and authentication [29], [8], key

exchange or digital rights management purposes [9].

B. Strong PUFs, Controlled PUFs, and Weak PUFs

There are several subtypes of PUFs, each with its own

applications and security features. Three major types, which

must explicitly be distinguished in this paper, are Strong PUFs

[29], [8] 1, Controlled PUFs [9], and Weak PUFs [11], [12],

also called Physically Obfuscated Keys (POKs) [7]. 2

1) Strong PUFs: Strong PUFs are disordered physical

systems with a complex challenge-response behavior and very

many possible challenges. Their security features are: (i) It

must be impossible to physically clone a Strong PUF, i.e.,

to fabricate a second system which behaves indistinguishably

from the original PUF in its challenge-response behavior. This

restriction shall hold even for the original manufacturer of

the PUF. (ii) A complete determination/measurement of all

1Strong PUFs have also been referred to as Physical Random Functions
[7], or Physical One-Way Functions [28].

2We would like to stress that the term “Weak PUF” and “Strong PUF”
are not to be understood in any pejorative or judgemental sense. They are
not meant to indicate that one PUF-type would be superior or inferior to
another. We merely follow a terminology that had originally been introduced
by Guajardo, Kumar, Schrijen and Tuyls [11], and which has later been
discussed by Rührmair et al. in [37], [32], [36], [33].
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challenge-response pairs (CRPs) within a limited time frame

(such as several days or even weeks) must be impossible, even

if one can challenge the PUF freely and has unrestricted access

to its responses. This property is usually met by the large

number of possible challenges and the finite read-out speed of

a Strong PUF. (iii) It must be difficult to numerically predict

the response RC of a Strong PUF to a randomly selected

challenge C, even if many other CRPs are known.

Possible applications of Strong PUFs cover key establish-

ment [29], [43], identification [29], and authentication [8].

They also include oblivious transfer [31] and any proto-

cols derived from it, including zero-knowledge proofs, bit

commitment, and secure multi-party computation [31]. In

said applications, Strong PUFs can achieve secure protocols

without the usual, standard computational assumptions con-

cerning the factoring or discrete logarithm problem (albeit

their security rests on other, independent computational and

physical assumptions). Currently known electrical, circuit-

based candidates for Strong PUFs are described in [41], [21],

[10], [17], [19]. The formal foundations of Strong PUFs have

been discussed in [37], [32].

2) Controlled PUFs: A Controlled PUF as described in [9]

uses a Strong PUF as a building block, but adds control logic

that surrounds the PUF. The logic prevents challenges from

being applied freely to the PUF, and hinders direct read-out

of its responses. This logic can be used to thwart modeling

attacks. However, if the outputs of the embedded Strong PUF

can be directly probed, then it may be possible to model the

Strong PUF and break the Controlled PUF protocol.

3) Weak PUFs: Weak PUFs, also called Physically Obfus-

cated Keys (POKs), may have very few challenges — in the

extreme case just one, fixed challenge. Their response(s) RCi

are used to derive a standard secret key, which is subsequently

processed by the embedding system in the usual fashion, e.g.,

as a secret input for some cryptoscheme. Contrary to Strong

PUFs, the responses of a Weak are never meant to be given

directly to the outside world.

Weak PUFs essentially are a special form of non-volatile

key storage. Their advantage is that they may be harder to

read out invasively than non-volatile memory like EEPROM.

Typical examples include the SRAM PUF [12], [11], Butterfly

PUF [16] and Coating PUF [42]. Integrated Strong PUFs have

been suggested to build Weak PUFs or Physically Obfuscated

Keys (POKs), in which case only a small subset of all possible

challenges is used [7], [41].

One important aspect of Weak PUFs is error correction and

stability. Since their responses are processed internally as a

secret key, error correction must be carried out on-chip and

with perfect precision. This often requires the storage of error-

correcting helper data in non-volatile memory on (or near) the

chip. Strong PUFs usually allow error correction schemes that

are carried out by the external recipients of their responses.

C. Modeling Attacks on PUFs

Modeling attacks on PUFs presume that an adversary Eve

has, in one way or the other, collected a subset of all CRPs

of the PUF, and tries to derive a numerical model from this

data, i.e., a computer algorithm which correctly predicts the

PUF’s responses to arbitrary challenges with high probability.

If successful, this breaks the security of the PUF and of

any protocols built on it. It is known from earlier work that

machine learning (ML) techniques are a natural and powerful

tool for such modeling attacks [7], [18], [26], [20], [40]. How

the required CRPs can be collected depends on the type of

PUF under attack.

1) Strong PUFs: Strong PUFs usually have no protection

mechanisms that restrict Eve in challenging them or in reading

out their responses. Their responses are freely accessible

from the outside, and are usually not post-processed on chip

[29], [41], [21], [10], [17], [19]. Most electrical Strong PUFs

further operate at frequencies of a few MHz [17]. Therefore

even short physical access periods enable the read-out of

many CRPs. Another potential CRP source is simple protocol

eavesdropping, for example on standard Strong PUF-based

identification protocols, where the CRPs are sent in the clear

[29]. Eavesdropping on responses, as well as physical access to

the PUF that allows the adversary to apply arbitrary challenges

and read out their responses, is part of the established attack

model for Strong PUFs.

2) Controlled PUFs: For any adversary that is restricted

to non-invasive CRP measurement, modeling attacks can be

successfully disabled if one uses a secure one-way hash over

the outputs of the PUF to create a Controlled PUF. We note

that this requires error correction of the PUF outputs which are

inherently noisy [9]. Successful application of our techniques

to a Controlled PUF only becomes possible if Eve can probe

the internal, digital response signals of the underlying Strong

PUF on their way to the control logic. Even though this

is a significant assumption, probing digital signals is still

easier than measuring continuous analog parameters within

the underlying Strong PUF, for example determining its delay

values. Physical access to the PUF is part of the natural attack

model on PUFs, as mentioned above.

3) Weak PUFs: Weak PUFs (or POKs) are only susceptible

to model building attacks if a Strong PUF, embedded in some

hardware system, is used to implement the Weak PUF. This

method has been suggested in [7], [41]. In this case, the

internal digital response signals of the Strong PUF to injected

challenges have to be probed.

We stress that purely numerical modeling attacks, as pre-

sented in this paper, are not relevant for POKs or Weak PUFs

with just one challenge (such as the Coating PUF, SRAM PUF,

or Butterfly PUF). This does not necessarily imply that these

PUFs are more secure than Strong PUFs or Controlled PUFs,

however. Other attack strategies can be applied, including

invasive, side-channel and virus attacks, but they are not the

topic of this paper. For example, probing the output of the

SRAM cell prior to storing the value in a register can break

the security of the cryptographic protocol that uses these

outputs as a key. Furthermore, attacking a Controlled PUF

via collecting CRPs from the underlying Strong PUF requires

substantially more signal probing than breaking a POK/Weak

PUF that possesses just one challenge.
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D. Our Contributions and Related Work

We describe successful modeling attacks on several known

electrical candidates for Strong PUFs, including Arbiter

PUFs, XOR Arbiter PUFs, Feed-Forward Arbiter PUFs, Light-

weight Secure PUFs, and Ring Oscillator PUFs. The attacks

are carried out on simulated CRPs and in part on “real” data

collected from FPGAs and ASICs. The prediction rates of

our machine learned models on simulated data significantly

exceed the known or derived stability of the respective PUFs

in silicon in these ranges. The results on silicon data show

little performance loss, confirming the viability of our attacks

in real-world scenarios. All attacks work for PUFs of up to a

given number of inputs (or stages) or complexity.

Our attacks are very feasible on the CRP side. They require

an amount of CRPs that grows only linearly or log-linearly

in the relevant structural parameters of the attacked PUFs,

such as their numbers of stages, XORs, feed-forward loops,

or ring oscillators. The computation times needed to derive

the models (i.e., to train the employed ML algorithms) are

low-degree polynomial, with one exception: The computation

times for attacking XOR Arbiter and Lightweight Secure PUFs

grow, in approximation for medium number of XORs and large

number of stages, super-polynomial in the number of XORs.

But the instability of these PUFs also increases exponentially

in their number of XORs, whence this parameter cannot be

raised at will in practical applications. On the other hand,

the number of stages in these two types of PUFs can be

increased without significant effect on their instability. This

provides a potential lever for making these PUFs more secure

without destroying their practicality. Our work thus also points

to design requirements by which the security of XOR Arbiter

PUFs and Lightweight Secure PUFs against modeling attacks

could be upheld in the future.

Our results break the security of Strong PUF-type protocols

that are based on one of the broken PUFs. This explicitly

includes any identification, authentication, key exchange or

digital rights management protocols, such as the ones de-

scribed in [29], [8], [28], [43], [10]. Under the assumptions

and attack scenarios described in Section 1.3, our findings also

restrict the use of the broken Strong PUF architectures within

Controlled PUFs and as Weak PUFs, if we assume that digital

values can be probed.

1) Related Work on Modeling Attacks: This article is an

extended journal version of Rührmair et al. [36]. Early work on

PUF modeling attacks, such as [10], [18], [26], [20], described

successful attacks on standard Arbiter PUFs and on Feed-

Forward Arbiter PUFs with one loop. But these approaches

did not generalize to Feed-Forward Arbiter PUFs with more

than two loops. The XOR Arbiter PUF, Lightweight PUF,

Feed-Forward Arbiter PUF with more than two Feed-Forward

Loops, and Ring Oscillator PUF had not been cryptanalyzed

until the first version of this work [36]. Further, no scalability

analyses of the required CRPs and computation times had been

performed in any earlier works.

In comparison to the first version of this article [36], the

main novelty is that results on a large database of silicon

CRPs from ASICs and FPGAs have been added. To this end,

ten Arbiter PUF instances on ASICs and ten on FPGAs were

utilized for CRP collection. The new result settles an open

question from the first version of this work [36], showing that

our findings on numerically simulated CRPs carry over with

very little performance loss to the silicon case. Majority voting

over potentially noisy responses for the same challenge was

helpful in breaking silicon Arbiter PUFs for large numbers of

XORs, and for achieving optimal prediction rates.

Since the appearance of the first version of this work [36],

Hospodar et al. recently published PUF modeling attacks on

ASIC data in a piece of interesting work [13]. The main

differences to this article are the following. Firstly, we take

a more comprehensive perspective on PUFs and modeling at-

tacks, examining five different PUF designs and three different

CRP sources, while Hospodar et al. focus on only two designs

and one source (ASICs). Secondly, we use larger CRP sets of

up to 200,000 silicon CRPs per PUF, while Hospodar et al.

use smaller databases of up to 9,000 silicon CRPs per PUF

instance. Finally, we employ different ML algorithms that lead

to a better performance. Hospodar et al. use Support Vector

Machines, SVMs, and Artificial Neural Networks, ANNs.

Such techniques had been tested by us in early stages, but

were not utilized intensively further on, since other algorithms

performed better. To name one example, Hospodar et al. break

up to 64-bit, 2-XOR Arbiter PUFs by SVMs and ANNs. These

techniques cannot generally attack Feed-Forward Arbiter PUFs

(see also Section VI-A). Using different and partly tailor-made

algorithms, we were able to break up to 64-bit, 5-XOR Arbiter

PUFs, both for FPGA and ASIC data, and to successfully

attack the examined Feed-Forward Arbiter PUF architectures

on large scales.

2) Entropy Analysis vs. Modeling Attacks: Another useful

approach to evaluate PUF security is entropy analysis. Two

variants exist: First, to analyze the internal entropy of the PUF.

This is similar to the established physical entropy analysis in

solid-state systems. A second option is to analyze the statistical

entropy of all challenge-response pairs of a PUF; how many

of them are independent?

Entropy analysis is a valuable tool for PUF analysis, but

it differs from our approach in two aspects. First, it is non-

constructive in the sense that it does not tell you how to break

a PUF, even if the entropy score is low. Modeling attacks, to

the contrary, actually break PUFs. Second, it is not clear if

the internal entropy of a circuit-based Strong PUF is a good

estimate for its security. The security of a Strong PUF comes

from an interplay between its random internal parameters

(which can be viewed as its entropy), and its internal model

or internal functionality. It is not the internal entropy alone

that determines the security. As an example, compare an 8-

XOR, 256-bit Arbiter XOR PUF to a standard Arbiter PUF

with bitlength of 8 · 256 = 2048. Both have the same internal

entropy, but very different security properties, as we show in

the sequel.

E. Organization of the Paper

The paper is organized as follows. We describe the method-

ology of our ML experiments in Section II. In Sections III to
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VII, we present our results for various Strong PUF candidates.

They deal with Arbiter PUFs, XOR Arbiter PUFs, Lightweight

Arbiter PUFs, Feed-Forward Arbiter PUFs and Ring Oscillator

PUFs, in sequence. Section VIII carries our a very detailed

proof of concept for silicon data from FPGA and ASICs. We

conclude with a summary and discussion of our results in

Section IX.

II. METHODOLOGY SECTION

A. Employed Machine Learning Methods

We evaluated various machine techniques prior to our exper-

iments, including Support Vector Machines (SVMs), Logistic

Regression, Evolution Strategies, and briefly also Neural Nets

and Sequence Learning. The approaches in the following two

sections performed best and are applied throughout the paper.

1) Logistic Regression: Logistic Regression (LR) is a well-

investigated supervised machine learning framework, which

has been described, for example, in [2]. In its application to

PUFs with single-bit outputs, each challenge C = b1 · · · bk is

assigned a probability p (C, t | ~w) that it generates a output t ∈
{−1, 1} (for technical reasons, one makes the convention that

t ∈ {−1, 1} instead of {0, 1}). The vector ~w thereby encodes

the relevant internal parameters, for example the particular

runtime delays, of the individual PUF. The probability is given

by the logistic sigmoid acting on a function f(~w) parametrized

by the vector ~w as p (C, t | ~w) = σ(tf) = (1 + e−tf )−1.

Thereby f determines through f = 0 a decision boundary of

equal output probabilities. For a given training set M of CRPs

the boundary is positioned by choosing the parameter vector

~w in such a way that the likelihood of observing this set is

maximal, respectively the negative log-likelihood is minimal:

~̂w = argmin~w l(M, ~w)

= argmin~w

∑

(C, t)∈M

−ln (σ (tf(~w,C))) (1)

As there is no analytical solution to determine the optimal

parameter vector ~̂w, it has to be optimized iteratively, e.g.,

using the gradient information

∇l(M, ~w) =
∑

(C, t)∈M

t(σ(tf(~w,C))− 1)∇f(~w,C) (2)

¿From the different optimization methods which we tested

in our ML experiments (standard gradient descent, iterative

reweighted least squares, RProp [2] [30]), RProp gradient

descent performed best. Logistic regression has the asset that

the examined problems need not be (approximately) linearly

separable in feature space, as is required for successful appli-

cation of SVMs, but merely differentiable.

In our ML experiments, we used an implementation of LR

with RProp programmed in our group, which has been put

online, see [14]. The iteration is continued until we reach a

point of convergence, i.e., until the averaged prediction rate of

two consecutive blocks of five consecutive iterations does not

increase anymore for the first time. If the reached performance

after convergence on the training set is not sufficient, the

process is started anew. After convergence to a good solution

on the training set, the prediction error is evaluated on the test

set.

The whole process is similar to training an Artificial Neural

Network (ANN) [2]. The model of the PUF resembles the

network with the runtime delays resembling the weights of

an ANN. Similar to ANNs, we found that RProp makes a

very big difference in convergence speed and stability of the

LR (several XOR-PUFs were only learnable with RProp).

But even with RProp the delay set can end up in a region

of the search space where no helpful gradient information is

available (local minimum). In such a case we encounter the

above described situation of converging on a not sufficiently

accurate solution and have to restart the process.

2) Evolution Strategies: Evolution Strategies (ES) [1], [39]

belong to an ML subfield known as population-based heuris-

tics. They are inspired by the evolutionary adaptation of a

population of individuals to certain environmental conditions.

In our case, one individual in the population is given by a

concrete instantiation of the runtime delays in a PUF, i.e., by a

concrete instantiation of the vector ~w appearing in Eqns. 1 and

2. The environmental fitness of the individual is determined

by how well it (re-)produces the correct CRPs of the target

PUF on a fixed training set of CRPs. ES runs through several

evolutionary cycles or so-called generations. With a growing

number of generations, the challenge-response behavior of

the best individuals in the population better and better ap-

proximates the target PUF. ES is a randomized method that

neither requires an (approximately) linearly separable problem

(like Support Vector Machines), nor a differentiable model

(such as LR with gradient descent); a merely parameterizable

model suffices. Since all known electrical PUFs are easily

parameterizable, ES is a very well-suited attack method.

We employed an in-house implementation of ES that is

available from our machine learning library PyBrain [38].

The meta-parameters in all applications of ES throughout

this paper are (6,36)-selection and a global mutation operator

with τ = 1√
n

. We furthermore used a technique called Lazy

Evaluation (LE). LE means that not all CRPs of the training

set are used to evaluate an individual’s environmental fitness;

instead, only a randomly chosen subset is used for evaluation,

that changes in every generation. In this paper, we always

used subsets of size 2,000 CRPs, and indicated this also in

the caption of the respective tables.

B. Employed Computational Resources

We used three hardware systems to carry out our exper-

iments: A stand-alone, consumer INTEL Quadcore Q9300,

and a comparable consumer AMD Quadcore, both worth less

than 1,000 Euros. Thirdly, a 30-node cluster of AMD Opteron

Quadcores, which represents a worth of around 30,000 Euros.

To ensure ease of comparison, all computation times given by

us in this paper are calculated for one core of one processor

of the corresponding hardware. If k cores are used in parallel,

the computation times can be reduced roughly by a factor

of 1/k, since our ML algorithms can be parallelized in a

straightforward manner.
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C. PUF Descriptions and Models

1) Arbiter PUFs: Arbiter PUFs (Arb-PUFs) were first

introduced in [10] [17] [41]. They consist of a sequence of

k stages, for example multiplexers. Two electrical signals race

simultaneously and in parallel through these stages. Their

exact paths are determined by a sequence of k external bits

b1 · · · bk applied to the stages, whereby the i-th bit is applied

at the i-th stage. After the last stage, an “arbiter element”

consisting of a latch determines whether the upper or lower

signal arrived first and correspondingly outputs a zero or a

one. The external bits are usually regarded as the challenge C
of this PUF, i.e., C = b1 · · · bk, and the output of the arbiter

element is interpreted as their response R. See [10] [17] [41]

for details. The parameter k is often referred to as the bitlength

of the Arbiter PUF.

It has become standard to describe the functionality of Arb-

PUFs via an additive linear delay model [18] [21] [20]. The

overall delays of the signals are modeled as the sum of the

delays in the stages. In this model, one can express the final

delay difference ∆ between the upper and the lower path in a

k-bit Arb-PUF as ∆ = ~wT ~Φ, where ~w and ~Φ are of dimension

k + 1. The parameter vector ~w encodes the delays for the

subcomponents in the Arb-PUF stages, whereas the feature

vector ~Φ is solely a function of the applied k−bit challenge

C [18] [21] [20].

In greater detail, the following holds. We denote by δ
0/1
i

the runtime delay in stage i for the crossed (1) respectively

uncrossed (0) signal path. Then

~w = (w1, w2, . . . , wk, wk+1)T , (3)

where w1 =
δ01 − δ11

2 , wi =
δ0i−1 + δ1i−1 + δ0i − δ1i

2 for all

i = 2, . . . , k, and wk+1 =
δ0k + δ1k

2 .

Furthermore,

~Φ( ~C) = (Φ1(~C), . . . ,Φk( ~C), 1)T , (4)

where Φl( ~C) =
∏k

i=l(1− 2bi) for l = 1, . . . , k.

The output t of an Arb-PUF is determined by the sign of the

final delay difference ∆. We make the technical convention of

saying that t = −1 when the Arb-PUF output is actually 0,

and t = 1 when the Arb-PUF output is 1:

t = sgn(∆) = sgn(~wT ~Φ). (5)

Eqn. 5 shows that the vector ~w via ~wT ~Φ = 0 determines a

separating hyperplane in the space of all feature vectors ~Φ.

Any challenges C that have their feature vector located on

the one side of that plane give response t = −1, those with

feature vectors on the other side t = 1. Determination of this

hyperplane allows prediction of the PUF.

2) XOR Arbiter PUFs: One possibility to strengthen the

resilience of arbiter architectures against machine learning,

which has been suggested in [41], is to employ l individual

Arb-PUFs in parallel, each with k stages (i.e., each with

bitlength k). The same challenge C is applied to all of them,

and their individual outputs ti are XORed in order to produce

a global response tXOR. We denote such an architecture as l-
XOR Arb-PUF (with the 1-XOR Arbiter PUF being identical

to the standard Arbiter PUF).

A formal model for the XOR Arb-PUF can be derived as

follows. Making the convention ti ∈ {−1, 1} as done earlier,

it holds that tXOR =
∏l

i=1 ti. This leads with equation (5) to

a parametric model of an l-XOR Arb-PUF, where ~wi and ~Φi

denote the parameter and feature vector, respectively, for the

i-th Arb PUF:

tXOR =

l∏

i=1

sgn(~wT
i
~Φi) = sgn(

l∏

i=1

~wT
i
~Φi) (6)

= sgn
(

l⊗

i=1

~wT
i

︸ ︷︷ ︸

~wXOR

l⊗

i=1

~Φi

︸ ︷︷ ︸

~ΦXOR

)
= sgn(~wT

XOR
~ΦXOR)(7)

Whereas (6) gives a non-linear decision boundary with l(k +
1) parameters, (7) defines a linear decision boundary by a

separating hyperplane ~wXOR which is of dimension (k+1)l.
3) Lightweight Secure PUFs: Another type of PUF, which

we term Lightweight Secure PUF or Lightweight PUF for

short, has been introduced in [21]. It is similar to the XOR

Arb-PUF of the last paragraph. At its heart are l individual

standard Arb-PUFs arranged in parallel, each with k stages

(i.e., with bitlength k), which produce l individual outputs

r1, . . . , rl. These individual outputs are XORed to produce a

multi-bit response o1, ..., om of the Lightweight PUF, accord-

ing to the formula

oj =
⊕

i=1,...,x

r(j+s+i) mod l for j = 1, . . . ,m. (8)

Thereby the values for m (the number of output bits of the

Lightweight PUF), x (the number of values rj that influence

each single output bit) and s (the circular shift in choosing the

x values rj) are variable design parameters.

Another difference to the XOR Arb-PUFs lies in the l inputs

C1 = b11 · · · b
1
k, C2 = b21 · · · b

2
k, . . . , Cl = bl1 · · · b

l
k which are

applied to the l individual Arb-PUFs. Contrary to XOR Arb-

PUFs, it does not hold that C1 = C2 = . . . = Cl = C, but a

more complicated input mapping that derives the individual

inputs Ci from the global input C is applied. This input

mapping constitutes the most significant difference between

the Lightweight PUF and the XOR Arb PUF. We refer the

reader to [21] for further details.

In order to predict the whole output of the Lightweight

PUF, one can apply similar models and ML techniques as

in the last section to predict its single output bits oj . While

the probability to predict the full output of course decreases

exponentially in the misclassification rate of a single bit,

the stability of the full output of the Lightweight PUF also

decreases exponentially in the same parameters. It therefore

seems fair to attack it in the described manner; in any case,

our results challenge the bit security of the Lightweight PUF.

4) Feed Forward Arbiter PUFs: Feed Forward Arbiter

PUFs (FF Arb-PUFs) were introduced in [10] [17] [18] and

further discussed in [20]. Some of their multiplexers are not

switched in dependence of an external challenge bit, but as
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a function of the delay differences accumulated in earlier

parts of the circuit. Additional arbiter components evaluate

these delay differences, and their output bit is fed into said

multiplexers in a “feed-forward loop” (FF-loop). We note that

an FF Arb-PUF with k-bit challenges C = b1 · · · bk (i.e., with

bitlength k) and l loops has s = k + l multiplexers or stages.

The described dependency makes natural architecture mod-

els of FF Arb-PUFs no longer differentiable. Consequently, FF

Arb-PUFs cannot be attacked generically with ML methods

that require linearly separable or differentiable models (like

SVMs or LR), even though such models can be found in spe-

cial cases, for example for small numbers of non-overlapping

loops.

The number of loops as well as the starting and end point

of the FF-loops are variable design parameters, and a host of

different architectures for an FF Arb-PUF with a moderate

or even large number of loops are possible. We conducted

first experiments with equally distributed loops that do not

overlap (this is the original design suggested in [17]), finding

that it was relatively simple to learn. The architecture we

eventually investigated in this paper was more resilient to

modeling. It consists of loops that are distributed at equal

distances over the structure, and which just overlap each other:

If the starting point of loop m lies in between stages n and

n + 1, then the previous loop m − 1 has its end point in

the immediately following stage n+1. This seemed a natural

and straightforward architectural choice; future experiments

will have to determine whether this is indeed the optimal

(i.e., most secure) architecture. We did not consider it our

target to develop new FF Arb-PUF architectures with possibly

optimized features in this publication.

5) Ring Oscillator PUFs: Ring Oscillator PUFs (RO-PUFs)

were discussed in [41], though oscillating loops were proposed

in the original silicon PUF paper [8]. They are based on the

influence of fabrication variations on the frequency of several,

identically designed ring oscillators. While [41] describes the

use of Ring Oscillator PUFs in the context of Controlled

PUFs and limited-count authentication, it is worth analyzing

them as candidate Strong PUFs. A RO-PUF consists of k
oscillators, each of which has its own, unique frequency caused

by manufacturing variations. The input of a RO-PUF consists

of a tuple (i, j), which selects two of the k oscillators. Their

frequencies are compared, and the output of the RO-PUF is

“0” if the former oscillates faster than the latter, and “1” else.

A ring oscillator can be modeled in a straightforward fashion

by a tuple of frequencies (f1, . . . , fk). Its output on input (i, j)
is “0” if fi > fj , and “1” else.

D. Numeric CRP Generation, Prediction Error, and Number

of CRPs

Given a PUF-architecture that should be examined, the

challenge-response pairs (CRPs) that we used in our ML

experiments were generated in the following fashion: (i) The

delay values for this PUF architecture were chosen pseudo-

randomly according to a standard normal distribution. We

sometimes refer to this as choosing a certain PUF instance in

the paper. In the language of Equ. 3, it amounts to choosing

the entries wi pseudo-randomly. (ii) If a response of this PUF

instance to a given challenge is needed, it is calculated by use

of the delays selected in step (i), and by application of a linear

additive delay model [19]: The delays of the two electrical

signal paths are simply added up and compared.

We use the following definitions throughout the paper: The

prediction error ǫ is the ratio of incorrect responses of the

trained ML algorithm when evaluated on the test set. For all

applications of LR, the test set each time consisted of 10,000

randomly chosen CRPs. For all applications of ES (i.e., for the

Feed-Forward Arbiter PUF), the test set each time consisted

of 8, 000 randomly chosen CRPs. The prediction rate is 1− ǫ.
NCRP (or simply “CRPs”) denotes the number of CRPs

employed by the attacker in his respective attack, for example

in order to achieve a certain prediction rate. This nomenclature

holds throughout the whole paper. Nevertheless, one subtle

difference should be made explicit: In all applications of LR

(i.e., in Sections III to V), NCRP is equal to the size of the

training set of the ML algorithm, as one would usually expect.

In the applications of ES (i.e., in Section VI), however, the

situation is more involved. The attacker needs a test set himself

in order to determine which of his many random runs was the

best. The value NCRP given in the tables and formulas of

Section VI hence reflects the sum of the sizes of the training

set and the test set employed by the attacker.

E. FPGA CRP Collection

To obtain CRP data from FPGAs, ten independent instances

of Arb-PUFs have been implemented on Spartan-6 FPGAs.

Following the PUF block diagram in Figure 1, the Arb-PUFs

were composed of 64 pairs of MUXs and a D flip-flop based

arbiter, and were implemented in Verilog.

... ARB
C1

1 or 0

v

t
C2 C3 Cn

v

t

tA

v

t

tB

ARB
C1

1 or 0

v

t
C2 C3 Cn

v

t

tA

v

t

tB

Fig. 1. Arbiter PUF Block Diagram

It is well known from earlier work [25] that in order to

implement Arb-PUFs on FPGAs, it is not sufficient to im-

plement a simple functional description. The on-chip routing

constraints and the inaccurate arbiter design on FPGAs lead

to asymmetric delay skews, which dominate and negate the

effect of physical process variations on the path delays. This

is indeed the main shortcoming of FPGAs in implementing

delay-based PUFs. As a countermeasure, Majzoobi et al. [22]

and [23] proposed a lookup table (LUT) based Programmable

Delay Line (PDL) (see Figure 2) to tune the delay skew. This

PDL realizes pico-second resolution, and moreover, it can be

implemented within a single LUT. By applying different LUT

input vectors, the input to the PDL will be delayed accordingly

to tune the delay skew from asymmetric routing. We followed

this strategy in our implementation.
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Fig. 2. Programmable Delay Line

We collected 200,000 CRPs from each of our ten FPGA

Arb-PUFs instances, resulting in two million CRPs altogether.

For each CRP, majority voting over five repetitive measure-

ments of the response to the same challenge was performed

in order to determine the final response. For example, if the

five measurements resulted in three “0” and two “1”s, the

final response was set to “0”. The challenges were generated

by a 64-bit pseudo-random number generator (PRNG), which

was based on a maximal-length linear feedback shift register

(LFSR). The chosen LFSR polynomial generated the maximal-

length sequence according to the formula

F = 1 +X1 +X3 +X4 +X64 (9)

where Xn denotes the corresponding 1-bit output from the nth

register. This PRNG is cryptographically weak, but it suffices

for our purpose of CRP collection, and operates simply and

quickly.

F. ASIC CRP Collection

To collect CRPs from silicon, we built Arb-PUF circuits

with 45nm SOI CMOS ASICs. The Arb-PUF circuit is com-

posed of a set of delay elements and an arbiter circuit element,

as illustrated in Figure 1. Each delay element consists of

two multiplexers (MUXes) with their inputs connected. The

challenge vectors form the select inputs to the MUXs, which

determine the paths taken by the top and bottom signal,

respectively. To evaluate the response bit for a particular

challenge, an input rising edge is propagated through the delay

stages. The response bit is determined to be a “1” or “0” based

on the top and bottom signal arrival times. In this PUF circuit,

a SR-latch is used as the arbiter to determine which signal

arrived first.

The challenges that we applied to our ASIC Arb-PUFs were

generated pseudo-randomly by the same LFSR as in the FPGA

case (see Section II-E). To minimize the number of signal IOs

on the ASIC PUF test chips, this LFSR was implemented on

chip, see Figure 3. The LSFR circuit is provided with a “SET”

signal and a fixed initial seed so that it can be reset to a known

state when necessary.

D Q

SET

^

D Q

SET

^

D Q

SET

^

D Q

SET

^

D Q

SET

^

DQ

SET

^

DQ

SET

^

SET

CLK

64 bit challenges

LFSR

Fig. 3. Challenge Generator of ASIC Arbiter PUFs

40 unpackaged chips of 45nm SOI CMOS technology were

taped out for post-silicon measurement, a die photo of which

can be seen in Figure 4. Each chip has two symmetrically

placed Arb-PUFs, resulting in 80 PUF instances, 10 of which

were used for data collection. To capture the CRPs, we set up

a post-silicon validation lab shown in Figure 5. A microscope

station is utilized to mount a 2-pin DC probe and an 8-

pin AC probe on the die. Tektronix AFG3252 and Agilent

8251A systems were used to generate “CLK”, “SET” and

other signals. A PicoScope 5000 with 1GS/s sampling rate

is used to capture the response bits.

Fig. 4. Die Photo of ASIC Arbiter PUFs

There exists noise in the test-bed and equipment we uti-

lized. In order to minimize measurement errors, the majority

response value of five repetitive measurements was selected as

the representative, just as in the case of FPGAs. For example,

if we get more than three “1s” or “0s”, response of that

challenge is marked as “1” or “0”. We captured 200,000 CRPs

from each of the ten used PUF instances, resulting in a total

of two million CRPs collected from ASICs.
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Fig. 5. CRP Collection from ASIC Arbiter PUFs

ML Bit Prediction
CRPs

Training
Method Length Rate Time

LR 64
95% 640 0.01 sec
99% 2,555 0.13 sec

99.9% 18,050 0.60 sec

LR 128
95% 1,350 0.06 sec
99% 5,570 0.51 sec

99.9% 39,200 2.10 sec

TABLE I
LR ON ARBITER PUFS WITH 64 AND 128 STAGES (I.E., WITH BITLENGTH

64 AND 128).

III. ARBITER PUFS

A. Machine Learning Results

To determine the separating hyperplane ~wT ~Φ = 0, we

applied SVMs, LR and ES. LR achieved the best results, which

are shown in Table I. We chose three different prediction rates

as targets: 95% is roughly the environmental stability of a 64-

bit Arbiter PUF when exposed to a temperature variation of

45C and voltage variation of ±2% 3. The values 99% and

99.9%, respectively, represent benchmarks for optimized ML

results. All figures in Table I were obtained by averaging over

5 different training sets. Accuracies were estimated using test

sets of 10,000 CRPs.

B. Scalability

We also executed scalability experiments with LR, which

are displayed in Figure 6 and Figure 7. They show that

the relevant parameters – the required number of CRPs in

the training set and the computational complexity, i.e., the

number of basic operations – grow linearly or low-degree

polynomially in the misclassification rate ǫ and the length k
of the Arb PUF. Theoretical considerations (dimension of the

feature space, Vapnik-Chervonenkis dimension) suggest that

the minimal number of CRPs NCRP that is necessary to model

3The exact figures reported in [18] are: 4.57% CRP variation for a
temperature variation of 45C, and 2.16% for a voltage variation of ±2%.

a k-stage arbiter with a misclassification rate of ǫ should obey

the relation

NCRP = O (k/ǫ). (10)

This was confirmed by our experimental results.

In practical PUF applications, it is essential to know the

concrete number of CRPs that may become known before the

PUF-security breaks down. Assuming an approximate linear

functional dependency y = ax + c in the double logarithmic

plot of Figure 6 with a slope of a = −1, we obtained the

following empirical formula (11). It gives the approximate

number of CRPs NCRP that is required to learn a k-stage

arbiter PUF with error rate ǫ:

NCRP ≈ 0.5 ·
k + 1

ǫ
(11)

Our experiments also showed that the training time of the

ML algorithms, measured in terms of the number of basic

operations NBOP , grows slowly. It is determined by the

following two factors: (i) The evaluation of the current model’s

likelihood (Eqn. 1) and its gradient (Eqn. 2), and (ii) the

number of iterations of the optimization procedure before

convergence occurs (see section II-A1). The former is a sum

over a function of the feature vectors ~Φ for all NCRP , and

therefore has complexity O (k ·NCRP ). On the basis of the

data shown in Figure 7, we may further estimate that the

numbers of iterations increases proportional to the logarithm

of the number of CRPs NCRP . Together, this yields an overall

complexity of

NBOP = O

(
k2

ǫ
· log

k

ǫ

)

. (12)

IV. XOR ARBITER PUFS

A. Machine Learning Results

In the application of SVMs and ES to XOR Arb-PUFs,

we were able to break small instances, for example XOR

Arb-PUFs with 2 or 3 XORs and 64 stages. LR significantly

outperformed the other two methods. The key observation is

that instead of determining the linear decision boundary (Eqn.

7), one can also specify the non-linear boundary (Eqn. 6). This

Fig. 6. Double logarithmic plot of misclassification rate ǫ on the ratio of
training CRPs NCRP and dim(Φ) = k + 1.
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Fig. 7. No. of iterations of the LR algorithm until “convergence” occurs (see
section II), plotted in dependence of the training set size NCRP .

is done by setting the LR decision boundary f =
∏l

i=1 ~wT
i
~Φi.

The results are displayed in Table II.

B. Performance on Error-Inflicted CRPs

The CRPs used in Section IV-A have been generated

pseudorandomly via an additive, linear delay model of the

PUF. This deviates from reality in two aspects: First of all, the

CRPs obtained from real PUFs are subject to noise and random

errors. Secondly, the linear model matches the phenomena on

a real circuit very closely [18], but not perfectly. This leads

to a deviation of any real system from the linear model on a

small percentage of all CRPs.

In order to mimic this situation, we investigated the ML

performance when a small error is injected artificially into the

training sets. A given percentage of responses in the training

set were chosen randomly, and their bit values were flipped.

Afterwards, the ML performance on the unaltered, error-free

test sets was evaluated. The results are displayed in Tables III

and IV. They show that LR can cope very well with errors,

provided that around 3 to 4 times more CRPs are used. The

required convergence times on error inflicted training sets did

not change substantially compared to error free training sets

of the same sizes.

C. Scalability

Figures 9 and 10 display the results of our scaling exper-

iments with LR. Again, the smallest number of CRPs in

ML Bit Pred. No. of CRPs Training

Method Length Rate XORs (×103) Time

LR 64 99%
4 12 3:42 min
5 80 2:08 hrs
6 200 31:01 hrs

LR 128 99%
4 24 2:52 hrs
5 500 16:36 hrs
6 — —

TABLE II
LR ON XOR ARBITER PUFS. TRAINING TIMES ARE AVERAGED OVER

DIFFERENT PUF-INSTANCES.

CRPs Percentage of error-inflicted CRPs

(×103) 0% 2% 5% 10%

24

Best Pr. 98.76% 92.83% 88.05% —
Ave. Pr. 98.62% 91.37% 88.05% —
Suc. Tr. 0.6% 0.8% 0.2% 0.0%
Conv. 40.0% 25.0% 5.0% 0.0%

50

Best Pr. 99.49% 95.17% 92.67% 89.89%
Ave. Pr. 99.37% 94.39% 91.62% 88.20%
Suc. Tr. 12.4% 13.9% 10.0% 4.6%
Conv. 100.0% 62.5% 50.0% 20.0%

200

Best Pr. 99.88% 97.74% 96.01% 94.61%
Ave. Pr. 99.78% 97.34% 95.69% 93.75%
Suc. Tr. 100.0% 87.0% 87.0% 71.4%
Conv. 100.0% 100.0% 100.0% 100.0%

TABLE III
LR ON 128-BIT, 4-XOR ARB PUFS WITH DIFFERENT LEVELS OF ERROR

IN THE TRAINING SET. WE SHOW THE BEST AND AVERAGE PREDICTION

RATES OF 40 RANDOMLY CHOSEN INSTANCES, THE PERCENTAGE OF

SUCCESSFUL TRIALS OVER THESE INSTANCES, AND THE PERCENTAGE OF

INSTANCES THAT CONVERGED TO A SUFFICIENT OPTIMUM IN AT LEAST

ONE TRIAL.

CRPs Percentage of error-inflicted CRPs

(×103) 0% 2% 5% 10%

500

Best Pr. 99.90% 97.55% 96.48% 93.12%
Ave. Pr. 99.84% 97.33% 95.84% 93.12%
Suc. Tr. 7.0% 2.9% 0.9% 0.7%
Conv. 20.0% 20.0% 10.0% 5.0%

TABLE IV
LR ON 128-BIT, 5-XOR ARB PUFS WITH DIFFERENT AMOUNTS OF

ERROR IN THE TRAINING SET. REST AS IN THE CAPTION OF TABLE III.

the training set NCRP needed to achieve predictions with

a misclassification rate ǫ scales linearly with the number of

parameters of the problem (the product of the number of stages

k and the number of XORed Arb-PUFs l):

NCRP ∼
(k + 1) · l

ǫ
. (13)

But, in contrast to standard Arb-PUFs, optimizing the non-

linear decision boundary (6) on the training set now is a non-

convex problem, so that the LR algorithm is not guaranteed

to find (an attractor of) the global optimum in its first trial. It

needs to be iteratively restarted Ntrial times. Ntrial thereby

Fig. 8. Graphical illustration of the effect of error on LR in the training set,
with chosen data points from Tables III and IV.



10

can be expected to not only depend on k and l, but also on

the size NCRP of the employed training set.

As is argued in greater detail in [40], the success rate (=
1/Ntrial) of finding (an attractor of) the global optimum is

determined by the ratio of dimensions of gradient information

(∝ NCRP as the gradient is a linear combination of the feature

vector) and the dimension dΦ in which the problem is linear

separable. The dimension dΦ is the number of independent

dimensions of ~ΦXOR =
⊗l

i=1
~Φi =

⊗l
i=1(Φ

1
i . . . ,Φ

k
i , 1)

T .

As the tensor product of several vectors consists of all possi-

ble products between their vector components, the independent

dimensions are given by the number of different products of

the form Φi1
1 ·Φi2

2 · . . .Φil
l for i1, i2, . . . , il ∈ {1, 2, . . . , k+1}

(where we say that Φk+1
i = 1 for all i = 1, . . . , l). For XOR

Arb-PUFs, we furthermore know that the same challenge is

applied to all l internal Arbiter PUFs, which tells us that Φi
j =

Φi
j′ = Φi for all j, j′ ∈ {1, . . . , l} and i ∈ {1, . . . , k + 1}.

Since a repetition of one component does not affect the product

regardless of its value (recall that Φr · Φr = ±1 · ±1 = 1),

the number of the above products can be obtained by counting

the unrepeated components. The number of different products

of the above form is therefore given as the number of l-tuples

without repetition, plus the number of (l − 2)-tuples without

repetition (corresponding to all l-tuples with 1 repetition), plus

the number of (l − 4)-tuples without repetition (corresponding

to all l-tuples with 2 repetitions), etc.

Writing this down more formally, dΦ is given by

dΦ =

(
k + 1

l

)

+

(
k + 1

l − 2

)

+

(
k + 1

l − 4

)

+ . . .

k≫l
≈

(k + 1)l

l!
. (14)

The approximation applies when k is considerably larger than

l, which holds for the considered PUFs for stability reasons.

Following [40], this seems to lead to an expected number of

restarts Ntrial to obtain a valid decision boundary on the

training set (that is, a parameter set ~w that separates the
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Fig. 9. Double logarithmic plot of misclassification rate ǫ on the ratio of
training CRPs NCRP and problem size dim(Φ) = (k + 1) · l.
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Fig. 10. Average rate of success of the LR algorithm plotted in dependence
of the ratio dΦ (see Eqn. (14)) to NCRP .

Bit Pred. No. of
CRPs

Training
Length Rate XORs Time

64 99%
3 6,000 8.9 sec
4 12,000 1:28 hrs
5 300,000 13:06 hrs

128 99%
3 15,000 40 sec
4 500,000 59:42 min

5 106 267 days

TABLE V
LR ON LIGHTWEIGHT PUFS. PREDICTION RATE REFERS TO SINGLE

OUTPUT BITS. TRAINING TIMES WERE AVERAGED OVER DIFFERENT PUF
INSTANCES.

training set), of

Ntrial = O

(
dΦ

NCRP

)

= O

(
(k + 1)l

NCRP · l!

)

. (15)

Furthermore, each trial has the complexity

Ttrial = O ( (k + 1) · l ·NCRP ) . (16)

V. LIGHTWEIGHT SECURE PUFS

A. Machine Learning Results

In order to test the influence of the specific input mapping

of the Lightweight PUF on its machine-learnability (see Sec.

II-C), we examined architectures with the following parame-

ters: variable l, m = 1, x = l, and arbitrary s. We focused on

LR right from the start, since this method was best in class

for XOR Arb-PUFs, and obtained the results shown in Table

V. The specific design of the Lightweight PUF improves its

ML resilience by a notable quantitative factor, especially with

respect to the training times and CRPs. The given training

times and prediction rates relate to single output bits of the

Lightweight PUF.

B. Scalability

Some theoretical consideration [40] shows the underlying

ML problem for the Lightweight PUF and the XOR Arb

PUF are similar with respect to the required CRPs, but

differ quantitatively in the resulting runtimes. The asymptotic
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formula on NCRP given for the XOR Arb PUF (Eqn. 13)

analogously also holds for the Lightweight PUF. But due to the

influence of the special challenge mapping of the Lightweight

PUF, the number Ntrial has a growth rate that is different

from Eqn. 15. It seems to lie between O
( (k + 1)l

NCRP · l!

)
) and

the related expression O
( (k + 1)l

NCRP

)
[40]. While these two

formulas differ by factor of l!, we note that in our case k ≫ l,
and that l is comparatively small for stability reasons. Again,

all these considerations on NCRP and NTrial hold for the

prediction of single output bits of the Lightweight PUF.

These points were at least qualitatively confirmed by our

scalability experiments. We observed agreement with the

above discussion in that with the same ratio CRPs/dΦ the

LR algorithm will have a longer runtime for the Lightweight

PUF than for the XOR Arb-PUF. For example, while with a

training set size of 12, 000 for the 64-bit 4-XOR Arb-PUF on

average about 5 trials were sufficient, for the corresponding

Lightweight PUF 100 trials were necessary. The specific chal-

lenge architecture of the Lightweight PUF hence noticeably

complicates the life of an attacker in practice.

VI. FEED FORWARD ARBITER PUFS

A. Machine Learning Results

We experimented with SVMs and LR on FF Arb-PUFs,

using different models and input representations, but could

only break special cases with small numbers of non-overlapp-

ing FF loops, such as l = 1, 2. This is in agreement with

earlier results reported in [20].

The application of ES finally allowed us to tackle much

more complex FF-architectures with up to 8 FF-loops. All

loops have equal length, and are distributed regularly over

the PUF, with overlapping start- and endpoints of successive

loops, as described in Section II-C. Table VI shows the results

we obtained. The given prediction rates are the best of 40

trials on one randomly chosen PUF-instance of the respective

length. The given CRP numbers are the sum of the training

set and the test set employed by the attacker; a fraction of 5/6

was used as the training set, 1/6 as the test set (see Section

II-D). We note for comparison that in-silicon implementations

of 64-bit FF Arb-PUFs with 7 FF-loops are known to have an

environmental stability of 90.16% [18].

B. Results on Error-Inflicted CRPs

For the same reasons as in Section IV-B, we evaluated the

performance on error-inflicted CRPs with respect to ES and FF

Arb PUFs. The results are shown in Table VII and Figure 11.

ES possesses an extremely high tolerance against the inflicted

errors; its performance is hardly changed at all.

C. Scalability

We started by empirically investigating the CRP growth

as a function of the number of challenge bits, examining

architectures of varying bitlength that all have 6 FF-loops.

The loops are distributed as described in Section II-C. The

Bit FF- Pred. Rate
CRPs

Training
Length loops Best Run Time

64

6 97.72% 50,000 07:51 min
7 99.38% 50,000 47:07 min
8 99.50% 50,000 47:07 min
9 98.86% 50,000 47:07 min
10 97.86% 50,000 47:07 min

128

6 99.11% 50,000 3:15 hrs
7 97.43% 50,000 3:15 hrs
8 98.97% 50,000 3:15 hrs
9 98.78% 50,000 3:15 hrs
10 97.31% 50,000 3:15 hrs

TABLE VI
ES ON FEED-FORWARD ARBITER PUFS. PREDICTION RATES ARE FOR

THE BEST OF A TOTAL OF 40 TRIALS ON A SINGLE, RANDOMLY CHOSEN

PUF INSTANCE. TRAINING TIMES ARE FOR A SINGLE TRIAL. WE APPLIED

LAZY EVALUATION WITH 2,000 CRPS.

Fig. 11. Graphical illustration of the tolerance of ES to errors. We show the
best result of 40 independent trials on one randomly chosen PUF instance for
varying error levels in the training set. The results hardly differ.

corresponding results are shown in Figure 12. Every data point

corresponds to the averaged prediction error of 10 trials on the

same, random PUF-instance.

Secondly, we investigated the CRP requirements as a func-

tion of a growing number of FF-loops, examining architectures

with 64 bits. The corresponding results are depicted in Figure

13. Again, each data point shows the averaged prediction error

of 10 trials on the same, random PUF instance.

In contrast to the Sections IV-C and V-B, it is now much

more difficult to derive reliable scalability formulas from this

data. The reasons are threefold. First, the structure of ES

provides less theoretical footing for formal derivations. Sec-

ond, the random nature of ES produces a very large variance

CRPs Percentage of error-inflicted CRPs

(×103) 0% 2% 5% 10%

50
Best Pr. 98.29% 97.78% 98.33% 97.68%
Ave. Pr. 89.94% 88.75% 89.09% 87.91%
Suc. Tr. 42.5% 37.5% 35.0% 32.5%

TABLE VII
ES ON 64-BIT, 6 FF ARB PUFS WITH DIFFERENT LEVELS OF ERROR IN

THE TRAINING SET. WE SHOW THE BEST AND AVERAGE PREDICTION

RATES FROM OVER 40 INDEPENDENT TRIALS ON A SINGLE, RANDOMLY

CHOSEN PUF INSTANCE, AND THE PERCENTAGE OF SUCCESSFUL TRIALS

THAT CONVERGED TO 90% OR BETTER.
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in the data points, making also clean empirical derivations

more difficult. Third, we observed an interesting effect when

comparing the performance of ES vs. SVM/LR on the Arb

PUF: While the supervised ML methods SVM and LR showed

a linear relationship between the prediction error ǫ and the

required CRPs even for very small ǫ, ES proved more CRP

hungry in these extreme regions for ǫ, clearly showing a

superlinear growth. The same effect can be expected for FF

architectures, meaning that one consistent formula for extreme

values of ǫ may be difficult to obtain.

It still seems somewhat suggestive from the data points in

Figures. 12 and 13 to conclude that the growth in CRPs is

about linear, and that the computation time grows polynomi-

ally. For the reasons given above, however, we would like

to remain conservative, and present the upcoming empirical

formulas only in the status of a conjecture.

The data gathered in our experiments is best explained by

assuming a qualitative relation of the form

NCRP = O(s/ǫc) (17)

for some constant 0 < c < 1, where s is the number of stages

in the PUF. Concrete estimation from our data points leads to

an approximate formula of the form

NCRP ≈ 9 ·
s+ 1

ǫ3/4
. (18)

The computation time required by ES is determined by the

following factors: (i) The computation of the vector product

~wT ~Φ, which grows linearly with s. (ii) The evolution applied

to this product, which is negligible compared to the other steps.

(iii) The number of iterations or “generations” in ES until

a small misclassification rate is achieved. We conjecture that

this grows linearly with the number of multiplexers s. (iv) The

number of CRPs that are used to evaluate the individuals per

iteration. If Eqn. 18 is valid, then NCRP is on the order of

O(s/ǫc).
Assuming the correctness of the conjectures made in this

derivation, this would lead to a polynomial growth of the

computation time in terms of the relevant parameters k, l

Fig. 12. Results of 10 trials per data point with ES for different lengths of
FF Arbiter PUFs and the hyperbola fit.

Fig. 13. Results of 10 trials per data point with ES for different numbers of
FF-loops and the hyperbola fit.

and s. It could then be conjectured that the number of basic

computational operations NBOP obeys

NBOP = O(s3/ǫc) (19)

for some constant 0 < c < 1.

VII. RING OSCILLATOR PUFS

A. Possible Attacks

There are several strategies to attack a RO-PUF. The most

straightforward attempt is a simple read out of all CRPs. This

is easy, since there are just k(k − 1)/2 = O(k2) CRPs of

interest, given k ring oscillators.

If Eve is able to choose the CRPs adaptively, she can employ

a standard sorting algorithm to sort the RO-PUF’s frequencies

(f1, . . . , fk) in ascending order. This strategy subsequently

allows her to predict all outputs with 100% correctness,

without knowing the exact frequencies fi themselves. The

time and CRP complexities of the respective sorting algo-

rithms are well known [27]; for example, there are several

algorithms with average- and even worst-case CRP complexity

of NCRP = O(k · log k). Their running times are also low-

degree polynomial.

ML No. of Pred. Rate CRPs
Method Oscill. Average

QS
256 99% 99.9% 14,060 28,891
512 99% 99.9% 36,062 103,986

1024 99% 99.9% 83,941 345,834

TABLE VIII
QUICK SORT APPLIED TO THE RING OSCILLATOR PUF. THE GIVEN CRPS

ARE AVERAGED OVER 40 TRIALS.

The most interesting case for our investigations is when Eve

cannot adaptively choose the CRPs she obtains, but still wants

to achieve optimal prediction rates. This case occurs in practice

whenever Eve obtains her CRPs from protocol eavesdropping,

for example. We carried out experiments for this case, in

which we applied Quick Sort (QS) to randomly drawn CRPs.
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The results are shown in Table VIII. The estimated required

number of CRPs is given by

NCRP ≈
k(k − 1)(1− 2ǫ)

2 + ǫ(k − 1)
, (20)

and the training times are low-degree polynomial. Eqn. 20

quantifies the limited-count authentication capabilities of RO-

PUFs.

VIII. PROOF OF CONCEPT FOR SILICON

DATA

So far, all of our results were achieved on numerically

simulated CRPs. In any simulations of the Arbiter PUF and

its variants, an additive linear delay model has been used

(see Section II-C). It assumes that the runtime delays in each

subcomponent simply add up linearly to form an overall delay

of each signal path. Based on earlier experiments with silicon

implementations [18] [6], it had been conjectured in the first

version of this work that this model is accurate enough that

our attacks transfer well to the silicon case [36].

We are now able to conduct a detailed validation of this

conjecture, both for ASIC and FPGA implementations, in this

section. The two architectures we chose to investigate were

Arbiter PUFs and XOR Arbiter PUFs. They are the two most

relevant designs in our context: For RO PUFs, the analytical

model, which simply assigns one frequency to each oscillator,

is very close to reality. FF Arb PUFs and and Lightweight

PUFs are also delay-based, therefore our results on (XOR)

Arb PUFs transfer well to their case. In our analysis, we used

overall more than four million silicon CRPs from FPGAs and

ASICs (see Sections II-F and II-E).

Below, we evaluate the absolute performance and also the

scalability on this CRP data. Our findings confirm that there is

little perfomance loss for silicon CRPs. Among other things,

this establishes the good applicability of the linear additive

delay model in any future security analyses of delay-based

PUFs.

A. Results on Arbiter PUFs

As described in detail in Sections II-E and II-F, we used

ten PUF-instances on FPGAs and ten on ASICs, and collected

200,000 CRPs of each of them. Table IX gives the results of

our LR algorithm on the FPGA and ASIC data, respectively.

They are very close to the earlier findings for synthetic CRPs

(see Section III and Table I). Only for very small prediction

errors slightly below 1%, the known small deviations from

the linear additive delay model, possible measurement errors,

and instabilities come into play and have a notable effect.

This makes it difficult to achieve extremely low prediction

rates such as 0.1% or smaller; a very large amount of CRP

data would be required for this rate. Anyway, in practice a

prediction error of 1% or below is already sufficient to break

the system.

1) Scalability: Similar to Section III-B, we conducted

scaling experiments on FPGA and ASIC data. We investigated

the relationship between the number of CRPs and prediction

rates, as well as the overall running time of our algorithm.

ML CRP Prediction
CRPs

Training
Method Source Rate Time

LR FPGA
> 95% 650 0.12 sec
> 99% 6500 0.83 sec

LR ASIC
> 95% 650 0.11 sec
> 99% 6500 0.76 sec

TABLE IX
LR ON ARB PUFS FOR SILICON CRP DATA FROM FPGAS.
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LR on FPGA ARBITER PUFS
ASIC

Fig. 14. Performance of LR on FPGA Arbiter PUFs for small prediction
errors. Each data point represents a single PUF instance.

Figure 14 depicts the results of our scaling experiments on

the required number of CRPs for FPGA data, while Figure

15 shows the same for ASIC data. The figures show that the

linear relation of Section III-B between the number of CRPs

and the prediction rate holds very well for a prediction error

of above 1%. In this regime, it is described by exactly the

same formula as in Section III-B:

NCRP ≈ 0.5 ·
k + 1

ǫ
. (21)

Below around 1%, a saturation effect occurs, however.

Reducing the prediction error further is still possible, but

increasingly requires more than a linear number of CRPs.
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CRPs/(k+1)
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tio

n 
er
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r

y=0.5/x

LR on ASIC ARBITER PUFS
ASIC

Fig. 15. Performance of LR on ASIC Arbiter PUFs for small prediction
errors. Each data point represents a single PUF instance.
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In this regime, the limits of the additive linear delay model

begin to show. Possible measurement errors and instabilities

contribute to this phenomenon, too.

Interestingly, this effect concerns FPGAs and ASICs in ex-

actly the same fashion. Among other things, this confirms that

Majzoobi et al.’s method of balancing the routing asymmetries

of FPGAs via look-up tables [22], [23] works very well (see

Section II-E).

The second aspect we investigated is the scaling of the

overall runtime of our algorithm. It is given in Figure 16. Our

results can be seen as confirmation that the basic relationship

given in Section IV-C still holds, and that the runtime scales

as

NBOP = O

(
k2

ǫ
· log

k

ǫ

)

. (22)

Still, some differences between the silicon and simulated

CRPs regarding are observable; noise and deviations from the

perfect linear additive delay model have a stronger effect in the

XOR case than in the case of single Arb-PUFs, and increase

the training times.

10E2 10E3 10E4 10E5
CRPs

10

20

30

40

50

60

70

ite
ra

tio
ns

y~log(x)

LR on ASIC/FPGA ARBITER PUFS
ASIC
FPGA

Fig. 16. Necessary trials for LR on FPGA and ASIC Arbiter PUFs.

B. Results on XOR Arbiter PUFs

We also investigated the case of XOR Arbiter PUFs for

FPGA and ASIC data. Our results are summarized in Table

X. Again, they are relatively close to our earlier findings of

Section IV-A. However, the small deviations from the linear

additive delay model now certainly have a stronger effect,

since we consider the XOR of several single Arbiter PUFs.

We were not able to learn 6-XOR Arb PUFs anymore with

the collected amount of data. Extrapolating from our previous

experience, we believe that about 700,000 CRPs would be

necessary to this end.

1) Scalability: We also conducted detailed scalability ex-

periments, following the methodology of Section IV-C. The

required number of CRPs vs. the achieved prediction error is

shown in Figure 17. It shows that for XOR Arb PUFs, the

saturation effect is similar to single Arbiter PUFs. The only

difference is that it already starts at slightly lower prediction

ML CRP Pred. No. of CRPs Training

Method Source Rate XORs (×103) Time

LR FPGA > 99%
3 19.5 51.5 sec
4 39 139 sec
5 78 39 min

LR ASIC > 99%
3 19.5 26 sec
4 39 63.5 sec
5 78 18:09 min

TABLE X
LR ON XOR ARBITER PUFS, ALL OF BITLENGTH 64, FOR FPGA AND

ASIC DATA. TRAINING TIMES ARE AVERAGED OVER DIFFERENT

PUF-INSTANCES.

rates, and slowly increases with the number of XORs. Still,

the saturation is so mild that also prediction errors below 1%

can be achieved, provided that a sufficient amount of CRPs is

used. Over 1%, the basic relationship

NCRP ∼
(k + 1) · l

ǫ
. (23)

appears to hold well, as discussed already in Section IV-C.

In terms of computation times, our findings are summarized

in Figure 18. It corresponds to Figure 10 in Section IV-C,

which used simulated CRPs. Again, our results at least quali-

tatively confirm the scaling behavior we earlier oberserved on

simulated data. Also for FPGA and ASIC data, the expected

number of restarts Ntrial to obtain a valid decision boundary

on the training set (that is, a parameter set ~w that separates

the training set), is given approximately by

Ntrial = O

(
dΦ

NCRP

)

= O

(
(k + 1)l

NCRP · l!

)

. (24)

Furthermore, each trial again has the approximate complexity

Ttrial = O ( (k + 1) · l ·NCRP ) . (25)
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Fig. 17. Performance of LR on XOR Arbiter PUFs for FPGA and ASIC data,
for small prediction errors.

IX. SUMMARY AND DISCUSSION

A. Summary

We investigated the resilience of several electrical Strong

PUF designs against modeling attacks. To that end, we applied
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various machine learning techniques to challenge-response sets

from two sources: (i) Pseudo-random numeric simulations

which used an additive delay model; and (ii) Silicon CRP

data from FPGAs and ASICs. Some of our main results are

summarized in Table XI.

We found that all examined Strong PUF candidates under

a given size could be machine learned with prediction rates

above 99 %. The attacks required a number of CRPs that grows

only linearly or log-linearly in the internal parameters of the

PUFs, such as their number of stages, XORs, feed-forward

loops, or ring oscillators. Apart from XOR Arbiter PUFs

and Lightweight PUFs (whose training times grew quasi-

exponentially in their number of XORs for large bitlengths

k and small to medium number of XORs l), the training times

of the applied machine learning algorithms are low-degree

polynomial, too.

The majority of our results were obtained on numerically

simulated CRPs. In order to show their viability for silicon

systems, we executed a very detailed proof of concept for

the two most well-studied designs, Arbiter PUFs and XOR

Arbiter PUFs. In this process, more than four million CRPs

collected from ASICs and FPGAs were used. The similarity

of our results on similated and silicon data settles a conjecture

that had been posed in earlier versions of this work [36]. It

shows that the linear delay model is close to practice, and

establishes its use in future security analyses of any Arbiter

PUF variants.

Our findings prohibit the use of the broken architectures

as Strong PUFs or in Strong-PUF based protocols. Under the

assumption that digital signals can be probed, they also affect

the applicability of the cryptanalyzed PUFs as building blocks

in Controlled PUFs and Weak PUFs.

B. Discussion

Two straightforward, but biased interpretations of our results

would be the following: (i) All Strong PUFs are insecure.

(ii) The long-term security of electrical Strong PUFs can be
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 ra

te

LR on XOR ASIC/FPGA PUFS
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FPGA 4XOR
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Fig. 18. Average rate of success of the LR algorithm on XOR Arbiter PUFs
for FPGA and ASIC data, plotted in dependence of the ratio dΦ (see Eqn.
(14)) to NCRP .

restored trivially, for example by increasing the PUF’s size.

Both views are simplistic, and the truth is more involved.

Starting with (i), our current attacks are indeed sufficient to

break several delay-based PUF implementations. But there are

a number of ways how PUF designers can fight back in future

designs. First, increasing the bitlength k in an XOR Arbiter

PUF or Lightweight Secure PUF with l XORs increases

the effort of the presented attacks methods as a polynomial

function of k with exponent l (in approximation for large

k and small or medium l). At the same time, it does not

worsen the PUF’s stability [6]. For now, one could therefore

disable attacks through choosing a strongly increased value of

k and a value of l that corresponds to the stability limit of

such a construction. For example, an XOR Arbiter PUF with

8 XORs and bitlength of 512 is implementable by standard

fabrication processes [6], but is currently beyond the reach of

our attacks. Similar considerations hold for Lightweight PUFs

of these sizes. Secondly, new design elements may raise the

attacker’s complexity further, for example adding nonlinearity

(such as AND and OR gates that correspond to MAX and

MIN operators [18]). Combinations of Feed-Forward and

XOR architectures could be hard to machine learn too, partly

because they seem susceptible only to different and mutually-

exclusive ML techniques.

Moving away from delay-based PUFs, the exploitation of

the dynamic characteristics of current and voltage seems

promising, for example in analog circuits [5]. Also special

PUFs with a very high information content (so-called SHIC

PUFs [34], [35], [15]) could be an option, but only in such

applications where their slow read-out speed and their compar-

atively large area consumption are no too strong drawbacks.

Their promise is that they are naturally immune against

modeling attacks, since all of their CRPs are information-

theoretically independent. Finally, optical Strong PUFs, for

example systems based on light scattering and interference

phenomena [29], show strong potential in creating high input-

output complexity.

Regarding view (ii), PUFs are different from classical

cryptoschemes like RSA in the sense that increasing their

size often likewise decreases their input-output stability. For

example, raising the number of XORs in an XOR Arbiter

PUF has an exponentially strong effect both on the attacker’s

complexity and on the instability of the PUF. We are yet unable

to find parameters that increase the attacker’s effort exponen-

tially while affecting the PUF’s stability merely polynomially.

Nevertheless, one practically viable possibility is to increase

the bitlength of XOR Arbiter PUFs, as discussed above. Future

work will have to show whether the described large polynomial

growth can persist in the long term, or whether its high degree

can be diminished by further analysis.

C. Future Work

The upcoming years will presumably witness an intense

competition between codemakers and codebreakers in the area

of Strong PUFs. Similar to the design of classical cryptoprimi-

tives, for example stream ciphers, this process can be expected

to converge at some point to solutions that are resilient against



16

PUF-Type
No. of XORs/ ML Bit CRP CRPs Training Prediction

FF-Loops/Ring Osc. Method Length Source (×103) Time Rate

Arbiter PUF — LR
128 Simulation 39.2 2.10 sec 99.9%
64 FPGA 6500 0.83 sec 99%
64 ASIC 6500 0.76 sec 99%

XOR Arbiter PUF 5 LR
128 Simulation 500 16:36 hrs 99%
64 FPGA 78 39 min 99%
64 ASIC 78 18:09 min 99%

Lightweight PUF 5 LR 128 Simulation 1000 267 days 99%

FF Arbiter PUF 8 ES 128 Simulation 50 3:15 hrs 99%

Ring Oscillator PUF 1024 QS – Simulation 83.9 — 99%

TABLE XI
SOME OF OUR MAIN RESULTS. THE PREDICTION RATES AND TRAINING TIMES ARE AVERAGED OVER SEVERAL INSTANCES. ALL PRESENTED TRAINING

TIMES ARE CALCULATED AS IF THE ML EXPERIMENT WAS RUN ON ONLY one single CORE OF one single PROCESSOR. USING k CORES WILL

APPROXIMATELY REDUCE THEM BY 1/k.

the known attacks. Some first attempts into this direction have

already been made in [44], [24], [3], [4], but we did not

analyze their viability in this work.

For PUF designers, it may be interesting to investigate some

of the concepts that we mentioned above. For PUF breakers, a

worthwhile starting point is to improve the attacks presented

in this paper through optimized implementations and new ML

methods. A performance comparison between our results and

earlier approaches that used SVMs and comparable techniques

[18], [13], illustrates the strong effect of the choice of the

right ML-algorithm (see Section I-D). Another, qualitatively

new path is to combine modeling attacks with information

obtained from direct physical PUF measurements or from side

channels. For example, applying the same challenge multiple

times gives an indication of the noise level of a response bit.

It enables conclusions about the absolute value of the final

runtime difference in the PUF. Such side channel information

can conceivably improve the success and convergence rates of

ML methods, though we have not exploited this in this paper.
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[31] U. Rührmair. Oblivious transfer based on physical unclonable functions
(extended abstract). TRUST 2010, Volume 6101 of Lecture Notes in

Computer Science, pages 430–440. Springer, 2010.
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