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ABSTRACT
Mobile computing and sensing technologies present exciting
opportunities for healthcare. Prescription wireless sensors
worn by patients can automatically deliver medical data to
care providers, dramatically improving their ability to diag-
nose, monitor, and manage a range of medical conditions.
Using the mobile phones that patients already carry to pro-
vide connectivity between sensors and providers is essential
to keeping costs low and deployments simple. Unfortunately,
software-based attacks against phones are also on the rise,
and successful attacks on privacy-sensitive and safety-critical
applications can have significant consequences for patients.

In this paper, we describe Plug-n-Trust (PnT), a novel ap-
proach to protecting both the confidentiality and integrity of
safety-critical medical sensing and data processing on vulner-
able mobile phones. With PnT, a plug-in smart card provides
a trusted computing environment, keeping data safe even on
a compromised mobile phone. By design, PnT is simple to
use and deploy, while providing a flexible programming inter-
face amenable to a wide range of applications. We describe
our implementation, designed for Java-based smart cards
and Android phones, in which we use a split-computation
model with a novel path hashing technique to verify proper
behavior without exposing confidential data. Our experimen-
tal evaluation demonstrates that PnT achieves its security
goals while incurring acceptable overhead.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Smartcards; J.3 [Life and Medical Sciences]: Health;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection
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Security, Performance
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1. INTRODUCTION
Healthcare information technology has potential to improve

healthcare quality, improve efficiency, and reduce cost, and
is currently on the cusp of major innovations and widespread
deployment around the world. There are especially exciting
opportunities for the application of mobile-sensing technolo-
gies to healthcare. Judicious use of this mHealth technology
can enable physicians to remotely monitor their patients’
health and improve the quality of healthcare, enable patients
to manage their health more easily, and reduce the cost of
care by allowing patients to spend less time in the hospital
or make fewer visits to their doctor [35].

There are many applications of mHealth sensing for clin-
ical purposes (such as long-term care for patients with di-
abetes [46] or hypertension [3]) and non-clinical purposes
(including elder care [6], lifestyle coaching for people seeking
to change unhealthy behavior [8], and fitness monitoring
for athletes [10]). Regardless of the nature of the person
being monitored – an outpatient being monitored remotely
by their doctor, a resident of an assisted-living facility, a
family member, or an athlete – for the purposes of this paper
we always refer to the subject of sensing as the “patient.”

Although healthcare information technology poses many
security and privacy challenges, including some specific to
mHealth [27], in this paper we focus on the mobile edge of
the mHealth ecosystem, where all of the above settings share
the same security and privacy challenges. These mHealth
sensing applications collect personal health-related data that
is inherently sensitive, and its unintended disclosure would
violate the patient’s privacy and possibly cause social or
economic harm to the patient. Furthermore, since this data
may be used to diagnose a patient’s condition or adjust
a patient’s treatment, any data corruption caused by an
adversary can have an adverse effect on the patient’s health.

Nearly all mHealth sensors require a gateway to forward
data from low-power sensors to back-end services, such as an
Electronic Health Record (EHR) maintained by a hospital,
a Personal Health Record (PHR) set up by the patient, or a
vendor-managed portal that provides the patient access to her
data. What device could serve as the gateway? For many
of today’s mHealth sensors, the gateway is a proprietary,
stationary device located in the patient’s home; this solution
limits data collection to those times when the patient is
at home. To enable mobility, the patient could carry a
proprietary mobile gateway; this solution requires the patient
to carry (and remember to charge) yet another device. A
third option is to leverage a device that many patients already
carry: their mobile phone. Such an approach would improve
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data collection (because the gateway would almost always
be present), and would reduce cost, by obviating the need
for a dedicated gateway device.

Unfortunately, it is risky to use mobile phones to collect
and process privacy-sensitive and safety-critical medical data.
The software running on today’s mobile phones is increas-
ingly complex – comparable to desktops and laptops – and
vulnerable to malware and other software-based attacks. As
phones are used in more sensitive processes (like banking or
location-based services), they present an attractive target for
attackers. Without reducing this risk, these attacks present
a significant obstacle standing in the way of the widespread
adoption and deployment of mobile healthcare systems.

We aim to provide strong security and privacy guarantees
for mHealth-sensing applications that are based on wearable
sensors and off-the-shelf mobile phones. At a high level,
there are two aspects to this problem. First, we must ensure
the desired confidentiality and integrity properties, within
the sensing devices and the mobile phone. Second, we must
ensure these properties in the communications between the
phone and the sensors. We address the first aspect in this
paper; we addressed the second aspect in an earlier paper [29].

Our approach, which we call Plug-n-Trust, is to create a
tiny trusted component, implemented on a smart card, that
literally “plugs in” to the patient’s mobile phone. The system
is designed to allow a health-related app to run on the phone,
collecting data from a body-area network of sensor devices.
Even if the phone has been compromised by malware, the
phone will not leak sensitive sensor data, nor be able to
tamper with the results reported to the back-end services
used by the patient or his caregivers.

There are other possible approaches, which we discuss
in more detail in Section 6. Trusted hypervisors [9, 19] try
to provide a secure sandbox for sensitive applications, but
require the user to replace (or underlay) their phone OS with
a hypervisor—not easy for any user and not possible on some
phones. Trusted hardware (such as a TPM [41]) provides a
secure root of trust on which one may build a trusted software
stack that can isolate sensing applications from other less-
trusted applications. Such approaches require trust and
agreement among many parties, most of whom have nothing
to do with mHealth, including the handset manufacturer,
the TPM chip maker, the hypervisor developer, and the OS
developer. Furthermore, although TPM hardware is common
in many desktop and laptop computers, the technology has
yet to be broadly leveraged, and has not yet appeared in
common mobile phones.

Ultimately, to be practical, the trusted computing base
(TCB) on which mHealth rests should require trust between
as few parties as possible and these trust relationships should
be relevant to the application. For medical applications, it
makes sense for the patient to trust the doctor or hospital,
and the manufacturers of the sensing devices, but requiring
them to trust the handset-maker or its OS vendor is unneces-
sarily risky. In Plug-n-Trust, as we show, the mobile portion
of the trusted computing base is small and robust, and easily
deployed: the physician (or other trusted caregiver) simply
provides a smart card to the patient, who then plugs it into
her phone.

We make three contributions in this paper. First,
we describe the design of Plug-n-Trust (PnT), a practical
approach to ensuring both the confidentiality and integrity of
both the sensing and processing of medical data on untrusted
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Figure 1: System model

smart phones. Second, we demonstrate the feasibility and
limitations of PnT using a prototype implementation on
Java-based smart cards and Android mobile phones. Third,
we provide a careful security analysis of PnT, demonstrating
that it meets the desired properties.

Our discussion of Plug-n-Trust focuses primarily on en-
abling trusted computing simply, requiring little or no sup-
port from smart-phone vendors and OS providers; however,
in Section 6.2 we discuss how PnT’s secure computing envi-
ronment can also be adapted to a vendor-deployed solution
using built-in secure elements like TrustZone [42].

2. SECURITY MODEL
In this section, we describe the architecture of mHealth

monitoring systems that we aim to protect, the adversary
model and threat model, the security goals that we aim to
achieve, and our trust assumptions. These assumptions form
the foundation for the design presented in the next section,
and for the security analysis in Section 5.

Our overall goal is to provide tools for vulnerable off-
the-shelf mobile devices to host privacy- and safety-critical
mHealth applications with minimal risk to patient privacy
and security, in the event of an attack.

2.1 System model
Figure 1 provides a high-level view of our mHealth-sensing

system. The mobile portion of the system consists of a mobile
node (MN), typically a mobile phone, and one or more sensor
nodes (SNs). The SNs communicate with the MN via a body-
area wireless network, using a protocol like Bluetooth, Zigbee,
or our secure protocol [29]. The MN communicates via the
Internet to various back-end services, such as EHRs, PHRs,
or vendor-managed portals that support customers of their
mHealth device.

Inside the MN, an mHealth application (mApp) is respon-
sible for collecting sensor data from the SNs, processing or
aggregating the information in some application-specific man-
ner, and then uploading (some of) the resulting data to the
back-end services. Some mHealth sensors (like EKG or EEG
sensors) collect data at a high rate, and some mHealth appli-
cations dynamically adjust sensing activity based on context.
It may not be feasible to upload all of the raw encrypted
data for processing on the back-end server. This approach
may require too much bandwidth, with accompanying energy
and monetary costs; with PnT we enable local operations
on the data, reducing bandwidth needs and enabling dis-
connected operation. Thus, to support application-specific
computations on the sensor data when the MN may itself
be compromised, we include a plug-in smart card, the “PnT
module” in the figure. This card provides a hardware root of
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trust, and in our implementation is a commercially-available
microSD card that simply snaps into the microSD slot in
off-the-shelf mobile phones.

Hardware assumptions
H1. Crypto. Each SN has the capability to encrypt and

hash its sensor readings, with standard algorithms like
AES and SHA [13, 45]. This capability is becoming
increasingly feasible in mote-class devices as hardware
support for encryption is present in an increasing num-
ber of low-power microcontrollers (e.g. TI CC430).

H2. Clock. Each SN has an embedded real-time clock that
is sufficiently accurate to timestamp its data.

H3. Platform. The MN is a general-purpose mobile plat-
form, such as a smart phone, with at least two wireless
network interfaces: one for body-area communications
with the SNs (comparable to Bluetooth or Zigbee), and
one for Internet communications (e.g., Wi-Fi or 3G).

H4. Internal sensors. The MN may have internal sensors,
such as a clock, camera, or GPS, but we must assume
that these are compromised when the MN is compro-
mised and thus PnT is unable to use them.

2.2 Adversary and threat model
A wide range of attacks have been demonstrated against

computing devices and networks, ranging from passive net-
work sniffing to hardware-based attacks that require physical
possession of the device. We consider secure communication
between the mobile phone and the back-end service, as well
as securing the back-end service itself, to be relatively routine
problems that have been addressed in a variety of ways. In
this paper, therefore, we focus on the security of the MN. (We
are less concerned with the SNs, which are single-purpose
embedded devices with a small attack surface, and are not
connected to the Internet. Although some attacks have been
demonstrated [23], mobile phones are much easier to attack.)

Mobile phones are at risk from many kinds of compromise.
Software-based attacks are particularly dangerous, since soft-
ware vulnerabilities are universally common, and attacks can
be launched remotely on many devices at once, at a small
cost to the attacker. Continuous efforts are being made to
protect mobile platforms against intrusion (e.g., MTM [12] or
virtualization [9]); however, attacks will continue to evolve,
and some attacks will inevitably succeed. All system compo-
nents from the applications down to the kernel, hypervisor,
and device drivers may potentially be compromised. These
attackers may have the ability to read system memory, ac-
cess communication channels, and arbitrarily modify system
behavior – including the processing of medical sensor data.

The patient should be concerned about several threats.

T1. The adversary may recover medical sensor data (or
data derived from it).

T2. The adversary may modify sensor data (or data derived
from sensor data), or inject false data, without it being
detected.

T3. The adversary may prevent the system from collect-
ing or reporting sensor data (DoS) without it being
apparent to the patient and back-end server.1

1Although DoS attacks are a real threat, we do not address
DoS attacks in this paper. See Section 7.1 for discussion.

We assume a strong adversary with some limitations, relevant
to the threats above:

A1. Computationally bounded. The adversary cannot break
cryptographic primitives such as AES and SHA.

A2. No compromise of SN. The adversary does not have
the capability to compromise either the software or
the hardware of the SN, at least, without it being
immediately evident to the patient.

A3. Physical attacks. The adversary is not capable of physi-
cal side-channel attacks such as power, heat, sound, and
electromagnetic clues to learn about the information
stored within the card.

A4. Local adversary. The adversary cannot compromise
any of the back-end services, but can compromise the
software running locally on the MN.

A5. Secure body-area network. The adversary is unable to
compromise patient confidentiality or anonymity, or
data integrity, by observing wireless body-area network
traffic; solutions exist [29].

2.3 Security properties
In the face of a powerful adversary, and to avoid the

threats listed above, we focus on the providing the following
security and privacy properties in our design of a more secure
approach to mHealth sensing.

SP1. Data Confidentiality. Sensor data and any data derived
from sensor data remains confidential to all entities
other than the system’s trusted components (sensor
node, the smart card, and the back-end server).

SP2. Sensor Data Integrity. The sensor data remains in-
tact during its processing and delivery to the back-end
server, and any injection of incorrect data or past data
into the system is identified.

SP3. Derived Data Integrity. Derived data is obtained from
sensor data by a series of computations defined by the
doctor. Derived data remains intact in transit, and any
attempt to deviate from the predefined derivation logic
is identified.

2.4 Trust model
Any trustworthy system is built on certain assumptions

about who trusts whom, and in what way. In our efforts
to achieve the above goals, we make the following trust
assumptions about the patient who uses the sensors, the
healthcare provider (doctor, hospital, or other entity that
consumes the data), and the companies that manufacture
the sensors and smart cards.

TR1. The patient and the healthcare provider trust the SN
manufacturer to produce calibrated sensors that oper-
ate correctly, so that the patient and the health provider
can trust the sensor to provide the right reading.

TR2. The patient and the healthcare provider trust the card
manufacturer to correctly implement PnT within the
card; thus, it protects confidentiality and integrity ac-
cording to the above goals, and in face of the above
adversaries.
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TR3. The patient trusts the healthcare provider (or other
data consumer) to keep sensor data confidential after it
has been delivered, and not to reveal encryption keys.

TR4. The healthcare provider trusts the patient to not be
malicious and to not tamper with the hardware or
software of the sensor node, or the PnT card.

The manufacturer has no stake in the system, so the
manufacturer assumes nothing about other principals.

3. Plug-n-Trust
Plug-n-Trust (or PnT) is a novel approach that enables

confidential and trustworthy processing of safety-critical med-
ical sensor data. As its name implies, PnT uses a smart card
that plugs into a phone’s microSD slot and serves as a tiny
trusted third party [24] to create a safe and trusted comput-
ing environment for critical data processing on an untrusted
mobile phone. In short, sensitive applications rely on the
card to perform sensitive processing, and the card provides
verifiable proof that computations were conducted properly.

In addition to the security goals of ensuring confidentiality
and integrity, PnT is designed to be usable, deployable,
flexible, and minimal, as the following paragraphs explain:

Usable: Requiring users to remember secrets (e.g., pass-
words), configure permissions, and annotate content often
makes systems more difficult to use, and may lead users to
bypass or disable security features altogether [11]. Instead,
PnT only requires a user to plug the trusted smart card into
her phone. After that the system operates automatically in
the background, without any additional interaction.

Easily Deployable: In addition to being difficult to use,
many technically feasible security systems require too much
infrastructure or agreement between too many different par-
ties (e.g., hardware manufacturers, software providers, and
network operators) to be deployed. For example, trusted soft-
ware stacks whose validity is verified by a hardware Trusted
Platform Module (TPM) [41] require a complex trust rela-
tionship between the TPM manufacturer, the platform man-
ufacturer, the operating-system vendor, and the application
developer, and in some cases, the cellular-network provider
(who often controls aspects of the platform or its operating
system). Furthermore, TPM programming remains highly
challenging, so TPMs have only been used in limited set-
tings [37]. New approaches, such as Logical Attestation [39],
may ease the use of TPMs if smart-phone vendors were to
adapt the Nexus operating system to small-scale platforms.

In contrast, PnT can be easily deployed because it only
requires trust relationships between the parties that are
directly involved (e.g., patient, provider, and card manufac-
turer), independent of those who are not (e.g., cell-phone
service providers, phone manufacturers, operating system
developers, or app stores).

Flexible: Applications change. Providers may want to
adjust sensing and processing just like they adjust doses of
medication. PnT is flexible by design. Applications can be
updated, modified, and tuned. Application designers need
only describe to the back-end server how data is processed, so
that its integrity can be verified. (Specifically, they provide
a compact representation of the sequence of mathematical
operations on the sensor data, but need not provide the
source code for the whole sensing application.)

Minimal: Minimizing a system’s Trusted Computing Base
(TCB) – the set of code that must remain intact to ensure
security – is essential to building secure systems [38]. In
existing systems the TCB is either the OS kernel, a hypervi-
sor [19], or a secure coprocessor [24]. In PnT the TCB (on the
phone) runs only on the plug-in smart card. This hardware
separation from all other code running on the system, with
a simple API, provides an extremely small attack surface.

Functional: The PnT card’s storage space can also be used
to store other media.

3.1 Plug-in smart card
For decades, smart cards have been used to protect en-

cryption keys and other sensitive information in applications
ranging from financial payment systems to cell phones (SIMs).
Early cards were used primarily for identification and had
limited storage; however, recent increases in both storage
and computation resources (including hardware support for
cryptography and secure random-number generation) make
these tiny tamper-resistant devices capable candidates for
more sophisticated tasks.

In Plug-n-Trust, we use a smart card in a microSD form
factor [17] as a pluggable trusted third party or secure copro-
cessor that represents the patient’s interests in a potentially
unsafe mobile phone. Phones that do not have a microSD
card slot could run PnT on a SIM card instead [33]. While
not as powerful as traditional secure coprocessors (like the
IBM 4758, used in the FaeriePlay prototype [24]), smart
cards are much more portable and more affordable.

Smart cards also provide PnT users with portability. They
are supported by many major mobile-phone operating sys-
tems (Android, Windows Mobile, BlackBerry, PocketLinux,
and Symbian), and even more importantly they allow a pa-
tient’s security to be independent of a single mobile device
or service provider. When a patient buys a new phone, the
user simply transfers the card to the new phone, leaving no
sensitive information behind and requiring no configuration,
other than installing an app—which may be loaded from
the smart card—on the new phone. If the card is lost or
stolen, its tamper-resistant design makes it more difficult for
the attacker to access private information (see Section 7.1
for more detail). Note that we do not assume tamper-proof
cards, for which tampering is impossible; tamper resistance,
like all security mechanisms raises the bar for the attacker.

The scant resources (a few kB for data and code) prevent
us from loading entire applications onto the card. Instead,
our goal is to do as little on the smart card as possible. The
application’s processing of sensitive data must happen in the
card, but program logic for sensor discovery, data collection,
and data delivery are performed on the mobile phone. While
this design choice is born from necessity, the benefits of a
small code base and an extremely simple interface between
the application and smart card (smaller attack surface) make
PnT easier to secure.

3.2 Bootstrapping Plug-n-Trust
PnT uses encryption to protect sensitive data when it is

transmitted between a sensor and the smart card and again
during delivery to the back-end server. This encryption
requires secret keys that are used to ensure both confidential-
ity of the data and authenticity of the system components.
Specifically, PnT requires each sensor s to have a key, Ks,
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which is known to the smart card. The smart card has a key,
Kc, which is also known to the back-end system.

A critical challenge with any cryptographic system is, of
course, key distribution. We need a secure way to share
secret keys between the PnT card and the sensor nodes,
without trusting the MN and its operating system. One
major advantage of PnT is that the card can be removed
from the phone, and paired directly with the SNs. We
imagine a range of possible approaches, depending on how
the sensors and smart card are deployed. Both sensors
and smart card may be provided by the care provider (who
also administers the back-end server), allowing keys to be
pre-installed before the patient receives the devices. More
likely, the patient may receive the sensors from a trusted
proxy of the provider, such as a pharmacy. In that case, the
pharmacist would insert the patient’s PnT card into a slot
on the pharmacist’s own trusted device, which then may use
any number of existing techniques to develop a shared secret
between the card and the SN. Alternately, the card might
come with a pairing device, much like that in the pharmacy
example, which the patient can keep at home and use for
introducing new sensors to the card. (Later, if the SN is lost
or discarded, the card needs to revoke the relevant keys; the
card can be informed via one of these trusted devices, or in a
secure message sent from the provider via the MN.) Finally,
Go-Trust plans to ship smart cards that support Near-Field
Communication (NFC), allowing the card to communicate
directly with NFC-capable SNs [21].

Notably, PnT is not tied to a single crypto-system, allow-
ing implementers considerable flexibility. An implementation
could easily use either symmetric (AES, DES) or asymmetric
(RSA, ECC) encryption. This decision has well-known trade-
offs. Asymmetric encryption provides greater flexibility for
key distribution and bootstrapping, but requires more com-
putation and larger keys. Our implementation uses AES-256
(in CBC mode), a symmetric algorithm, which is efficient for
low-power sensor devices.

3.3 Plug-n-Trust basic operation
In PnT, data is encrypted before it leaves the sensor,

remains encrypted while stored on the mobile phone, and
only is decrypted (and modifiable) in the card, as shown in
Figure 2. The card exposes a simple API that facilitates
communication between the application and the card. We
assume that a sensing application is a series of tasks, and the
mApp signals the beginning of a new task with the command:

start()

which resets internal data structures on the card.

Moving data in and out of the card
Raw data messages arrive from sensor s encrypted with the
sensor’s key, Ks. In addition to one or more raw data read-
ings (data), the message also includes additional metadata—
the ID of the originating sensor (s), the time of collection (t),
a sequence number (n), an error flag (e), and a message
authentication code (MAC) computed over all of the above
(s,t,n,e, and data) after encryption. The HMAC algorithm
uses a key, Km

s , derived from Ks—to protect the integrity
of the data and its processing.

m = {s, t, n, e, data}Ks
,HMAC

(
{s, t, n, e, data}Km

s

)
The application transfers the encrypted data message, m,

Smart Card Mobile Phone (mApp)

Data

seal

unseal

{Data, meta}Ks

{Result, meta}Kc

...
Processing
Commands

...

...

Result

Figure 2: In Plug-n-Trust, encrypted sensor data is
passed (sealed) into the smart card, processed ac-
cording to application-supplied commands, and the
encrypted result is then removed (unsealed) from
the card.

as well as the ID of the originating sensor, s, into the card
using the seal command. Passing in the sensor ID, s, is not
strictly necessary, since the smart card could try to decrypt
the message with all of its known keys; however, as the num-
ber of keys increases this quickly becomes inefficient. After
the data and metadata are stored in the card, seal returns
a data-independent reference, rm, that the application can
use in subsequent processing operations on the data.

seal(s,m)⇒ rm

Sensor readings can be sealed into the card individually, or
as vectors of sequential readings, which is useful for reducing
the amount of communication between the application and
the card. For simplicity, our design assumes that sensor
readings are integer values; floating-point support would be
an easy extension to the architecture.

Once processing is complete, the application can use un-
seal to retrieve the computational result and associated
metadata used by the server to validate the computation
(see Section 3.5). The card encrypts all of this data before
releasing it to the phone.

unseal(rm)⇒ {result,metadata}Kc

Arithmetic operations
add(r1, r2)⇒ r3 addc(r1, c)⇒ r2
sub(r1, r2)⇒ r3 subc(r1, c)⇒ r2
mult(r1, r2)⇒ r3 multc(r1, c)⇒ r2
div(r1, r2)⇒ r3 divc(r1, c)⇒ r2

After data has been sealed into the card, PnT provides a
variety of commands for processing the data. Standard arith-
metic operations are provided that add, subtract, multiply,
and divide the values associated with two references, r1 and
r2, and return a reference, r3, to the result.

The references can refer to scalars or vectors, with straight-
forward semantics. If both references refer to scalar values,
then the operation is applied to both and the result is also
a scalar. If both are vectors, then the requested operation
is applied in pairwise fashion to corresponding elements in
each vector, resulting in a vector of the same length. If the
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vectors are of different lengths—which is likely an uncommon
case—then some entries will be ignored and the length of
the result is min(length(r1), length(r2)). Finally, if one value
is a scalar and the other a vector, then the scalar value is
applied to each of the vector’s entries.

Corresponding commands are also provided for arithmetic
with a fixed constant. For example, divc(r, 2) divides an
in-card scalar or vector referred to by r by 2.

Summarizing data
sum(r1)⇒ r2 max(r1)⇒ r2
prod(r1)⇒ r2 min(r1)⇒ r2

len(r1)⇒ r2

A set of commands are also provided that reduce a vector
of elements to a scalar. These commands allow an application
to compute the sum or product of a vector, or determine
the maximum or minimum element in the vector. These
commands only make sense for vectors, and if applied to a
scalar the result will just be a copy of the original argument,
except len(), which outputs 1.

Logical comparisons
gt(r1, r2)⇒ r3 gtc(r1, c)⇒ r2
lt(r1, r2)⇒ r3 ltc(r1, c)⇒ r2
eq(r1, r2)⇒ r3 eqc(r1, c)⇒ r2

In addition to arithmetic computations, the ability to
compare sensor readings to each other, or to a constant
value, is critical to many applications that process sensor
readings.

and(r1, r2)⇒ r3 or(r1, r2)⇒ r3 not(r1)⇒ r2

The Boolean results of those comparisons can also be mod-
ified using the standard and, or, and not Boolean operators.
Both comparison and Boolean commands can be applied to
both scalars and vectors. When vectors are used, the desired
operation is applied to each element of the vector, and the
result is a vector.

Conditional execution
if(r1, r2, r3)⇒ r4

Finally, without the ability to support data-dependent pro-
cessing, PnT would not be useful to a significant number of
applications. The if command makes conditional execution
possible as demonstrated in the following example, which
computes the arithmetic mean of the elements of vector, d,
and uses conditional execution to avoid dividing by zero.

seal(s, {d}Ks)⇒ r1 (1)

sum(r1)⇒ r2 (2)

len(r1)⇒ r3 (3)

eqc(r3, 0)⇒ r4 (4)

div(r2, r3)⇒ r5 (5)

if(r4, r3, r5)⇒ r6 (r6 ⇐ r3 or r5) (6)

unseal(r6)⇒ {result,metadata}Kc (7)

The if command on line 6 accepts three arguments: a
Boolean value stored at reference, r4, which resulted from the
comparison on line 4; and two possible results. The second
possible result is r3, which equals zero in the error condition.
The second, r5, is the result of the division on line 5. If a

divide by zero occurred, then the division fails silently, the
value in r5 is undefined, and its error flag is set. According
to the typical C-style ternary operator semantics, the value
pointed to by r6 will be the value of r3 if r4 is true, and the
value of r5 otherwise. Note that conditional execution in
PnT requires both sides of a branch to be executed, which
is wasteful in many cases, but necessary to avoid leaking
information about the values of the data.

The other major control-flow construct, loops, can be
implemented within the mApp. That is, the mApp can loop
as many times as needed, sending commands to the card.
Data-dependent loop conditions can be implemented (albeit
inefficiently) using the if command (see Section 7.1).

Additional commands
When selecting commands for PnT, we focused on supporting
common processing tasks used in mHealth applications, like
summarizing data (statistics such as mean, median, variance,
and covariance) and checking data ranges and thresholds (is
the patient’s blood sugar within a safe range?).

As shown in our evaluation section, our current set of op-
erations also supports Actigraphy [4], which is a well-known
metric for measuring activity level based on accelerometer
data, often used for diagnosing sleep disorders. There are
three ways to compute Actigraphy. The most popular and
sophisticated method is Proportional Integral Mode (PIM),
which computes the area below the curve; we integrate us-
ing the trapezoidal integration rule. Other methods include
Zero Crossing Mode (ZCM), which computes the number
of intersections between zero axis and the curve, and Time
Above Threshold (TAT), which measures the length of time
that the signal is above a certain threshold. Our proposed
operation set easily supports both ZCM and TAT as well.

We discuss the potential for other, more complex compu-
tations in Section 7.2.

3.4 Handling errors and hiding variation
Errors, exceptions, and conditional execution may all po-

tentially leak information about the data being processed.
Returning a divide-by-zero error, for example, reveals that
the divisor is equal to zero. Likewise, a naive implemen-
tation of if might allow an attacker to learn which block
was executed, if one took longer than the other. Since we
assume that the attacker issues arbitrary commands, errors
and conditionals could provide the tools an attacker would
need to discover the value of any data element stored in the
card. In our design of Plug-n-Trust, we deal with these cases
in three ways:

Fail silently: When data-dependent errors occur, like divide-
by-zero, PnT fails silently. A result is returned as though the
operation succeeded, and internally, the data’s associated
error bit is set. The error will be apparent to the back-end
server when the data is received, but not to the attacker.

Take the long way: PnT avoids information leakage by
removing timing variation from its execution. For example,
in if operations, both possible results must be computed.
This maintains the confidentiality of the data, at the cost
of some wasted computation. In practice, we have found
this wasted computation to be minimal, though pathological
cases exist that would be impractical.

Stick to one size: When unsealing, PnT always returns
a vector padded out to its maximum size, which in our
implementation must be a multiple of the AES block size
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(16 bytes); currently our vectors are all 32 bytes long. The
adversary cannot learn anything about data values from the
size of the returned data.

3.5 Detecting invalid processing
The architecture, as described thus far, is sufficient to keep

sensor data and processing confidential. Of course, ensuring
confidentiality alone is not sufficient. The attacker, who
can issue arbitrary commands, may attempt to modify the
data-processing results to cause harm without knowing any
of the sensor values. To protect the patient against invalid
processing, the back-end system (acting on behalf of the care
provider) should be able to verify whether the expected data
processing has occurred.

A naive approach might keep a history of all operations
that are performed on each piece of sensor data, and ship
that history with the data when it is unsealed. Whoever uses
the data can then verify that the history is valid. This would
be simple to implement, but completely impractical. A key
reason for processing data locally is to reduce bandwidth
requirements—a benefit that would be defeated by storing
complete histories.

Instead, for each data element, d, PnT represents its pro-
cessing history (or path) using a compact incremental hash,
Hd. These hashes are similar in flavor to “path identifiers”
used by path-profiling algorithms (e.g., Ball-Larus [7]); how-
ever, path-profiling algorithms only prevent path ID collisions
within a program while PnT must protect against external
hash collisions. The back-end server knows enough about
the mApp to know the proper sequence of operations, the
set of sensor IDs, and the expected sequence of operands. It
can thus compute an expected path hash, and compare it
with the path hash reported from the card, to verify whether
the correct data was correctly processed.

Figure 3 shows an example of path hashes; in this compu-
tation of (y1x1 + 5x2) two readings x1 and x2 are collected
from sx (in that order), and y1 is collected from sy. If the
adversary changes the operations, or rearranges the operands,
the path hash will be different and allow the back-end to
detect the attack. PnT computes a hash value at each step,
incorporating information about both the op-code and the
operands; the hash function H can be any cryptographically
secure hash function (our implementation uses SHA-256).
For arithmetic commands, such as mult or add, the path
hash is computed by applying H to the concatenation of the
op-code Opcmd and a representation of the arguments: for a
constant c, we hash in c; for a reference r, we hash in Hr.

At the beginning, the start() operator notifies the card
of a new task. When operator seal(s, {s, t, n, e, data}Ks)
is called, where n is the sequence number, and t is the
sensing time, the card does the following: If it is the first
seal command for sensor s (since the start), the card stores
the sequence number n in an internal variable seq(s). For
all seal operations, the card computes the hash value for
the operation as H(Opseal | s |n−seq(s)) where Opseal is the
op-code for sealing. We call (n−seq(s)) the relative sequence
number. For example, the first sealings for sensors sx and
sy (the second and third lines in Figure 3) sets each relative
sequence number to 0, while the subsequent sealing (the
fifth line) results in 1. With the relative sequence numbers
embedded in the path hash, the back-end server can check
the correct order of the data (see Section 5.2): if, for example,

Figure 4: Our prototype, configured for power mea-
surement.

the adversary swaps x1 and x2, Hr1 and Hr4 would change
and thus so would the overall Hr6 .

Upon receiving unsealed data, the back-end server pre-
computes the hashes it expects to receive (based on the
desired data processing), and compares those hashes to those
included in the data. Hashes that do not match in the
back-end’s computation are invalid, indicating an attack.

For the back-end server to verify freshness of the compu-
tation, it must be given some knowledge of the time dur-
ing which the data was collected. Thus, we maintain for
each reference a time range (tmin, tmax) that represents the
timestamps of the data used to compute its value, and each
operator’s output is assigned a time range that is the union
of the time ranges of its inputs. Figure 3 shows the final
time range reported as part of the unseal result.

3.6 Managing card resources
Smart cards have limited resources; for example, the G&D

card we use has 160 Kbytes of ROM, 4608 bytes of RAM and
72 Kbytes of EEPROM. The EEPROM is shared between
program and data and when EEPROM is exhausted the
smart card will start returning errors. A simple resource
manager could keep track of data storage to handle errors of
this nature more gracefully. Further, there is no automatic
garbage collection so the programmer must remember to free
references when done with them. When data is unsealed
all intermediate values could instead be automatically freed.
See Section 7 for a discussion of automatic path extraction
and automatic reference freeing.

4. IMPLEMENTATION AND EVALUATION
To evaluate the potential for our approach in real appli-

cations, we implemented PnT using current mobile-phone
and smart-card technology. Our test hardware, shown in
Figure 4, includes a G&D smart card [17] and two smart
phones – the G1 (shown) and Nexus One Android phones.

PnT’s on-card component is implemented as an applet for
the JavaCard v2.2.1 platform. The G1 and Nexus One phones
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Operation: Path Hash: Time range: Sequence numbers:

start()
seal(sx, {x1, nx1 , t1}Ksx

)⇒ r1 Hr1 = H(Opseal | sx | 0) time(r1) = (t1, t1) seq(sx) = nx1

seal(sy, {y1, ny1 , t2}Ksy
)⇒ r2 Hr2 = H(Opseal | sy | 0) time(r2) = (t2, t2) seq(sy) = ny1

mult(r1, r2)⇒ r3 Hr3 = H(Opmult |Hr1 |Hr2) time(r3) = (t1, t2)
seal(sx, {x2, nx2 , t3}Ksx

)⇒ r4 Hr4 = H(Opseal | sx | 1) time(r4) = (t3, t3) nx2 − seq(sx) = 1
multc(r4, 5)⇒ r5 Hr5 = H(Opmultc |Hr4 | 5) time(r5) = (t3, t3)
add(r3, r5)⇒ r6 Hr6 = H(Opadd |Hr3 |Hr5) time(r6) = (t1, t3)
unseal(r6)⇒ {time(r6), value(r6), Hr6}Kc

Figure 3: An example procedure for computing path hash and generating the message to be sent to the
back-end server. The task is to compute y1x1 + 5x2. Assume that t1 < t2 < t3 and nx1 + 1 = nx2 . For clarity we
do not include the error codes (e) in the inputs and outputs or the computed HMACs for seal and unseal.

run Android versions 1.6 (Donut) and 2.3.5 r1 (Gingerbread)
respectively, both modified with seek-for-android [36], a
free implementation of PC/SC (“Personal Computer/Smart
Card”, a specification for smart-card integration into com-
puting environments) for Android phones.

As examples, we implemented several computations that
are commonly used in processing health-related sensor data:
Mean & variance, which compute basic statistics (e.g., arith-
metic mean, variance, data range) that help to remove noise
and quantify volatility; Zone detection, which help to monitor
heart-rate or blood-glucose levels, because providers often
want to know if values fall outside a particular zone rather
than the specific data values; and Sleep actigraphy, in which
accelerometer readings are integrated over time to measure
a patient’s sleep patterns.

In this section, we evaluate the overhead and performance
limitations of PnT, using our current implementation. Specif-
ically, we focus on energy consumption and processing speed,
using today’s smart-card technology, and identify key focus
areas for future improvement.

4.1 Energy overhead
To assess the impact of PnT on mobile device battery

performance, we measured the quiescent power consumption
as well as the per-command and per-application energy cost of
our PnT prototype. We measured energy consumption using
a Monsoon Power Monitor2 and a microSD card extender,
with custom modifications to facilitate power monitoring,
as shown in Figure 4. For the sake of comparison, we use
this same setup to measure the idle power and active energy
characteristics of a standard Transcend microSD flash card
plugged into the same phones.

The measured idle power draw of the G&D smart card is
roughly 9mW—an order of magnitude higher than that of a
standard flash card; however, this would still require 4 days to
drain just 10% of the G1 phone’s battery. For low-frequency
applications where the smart card is used infrequently, the
card can also be powered down between uses.

The per-task energy consumptions are shown in Table 1
for several PnT tasks, our applications, and 1 MB reads
and writes to the flash card. While we only show results
for a subset of PnT’s processing commands, the time and
energy requirements of the other data-processing operations
are comparable. The impact of PnT on device lifetime will
depend on how often it is used as well as other unrelated
activities on the phone; however, even if PnT were constantly

2http://www.msoon.com

processing data, it would drain only 20% of the phone’s
battery over the course of a day.

4.2 Processing performance
While the energy costs for processing are not a significant

limitation, processing speed is still a challenge. Table 1 also
shows the computation time of the PnT commands and
applications, the maximum data rate (samples/s) that each
can sustain, and the percentage of time that is spent by
each in communication between the phone and the card.
For tasks that must compute an HMAC, the percentage
of time spent computing the HMAC is also shown. The
max data rate is ten times one over the computation time,
since ten samples were processed per seal. The percentage
of time is the measured communication ping time divided
by the computation time (for the apps the ping time was
multiplied by the number of operations). These performance
results are shown for the Nexus One phone. The results
for the G1 phone running Donut were identical, except it
had an additional communication latency of roughly 30 ms
for each message sent to the card. These results show that,
at least for this generation of smart cards, PnT is suitable
primarily for applications with low-to-medium sampling rate.
This poor performance stems from three key factors: slow
communication, lack of HMAC support, and the card’s built-
in persistence mechanisms.

To date, smart cards have been used primarily as secure key
stores that perform cryptographic functions for e-commerce
applications with low data-rate requirements. Consequently,
they have been optimized for fast cryptographic operations,
but not for fast communication—a fact that results in PnT
spending 16–93% of a given task’s time in communication.
Moving PnT to a newer phone (Nexus One) and a newer
version of Android (Gingerbread) improved communication
performance by nearly 50%, and we expect that overhead can
be dramatically reduced further by optimizing the software
that communicates with the card.

A second performance challenge is that our current cards do
not provide support for HMAC computations. Our software
HMAC implementation currently accounts for more than
50% of the seal and unseal operations and 12–36% of the
total runtime in our test applications. Based on the next-
generation JavaCard specifications, we expect newer cards
to provide hardware support for HMAC in the near future.

The third reason for slow performance in PnT stems from
the fact that today’s smart-card hardware and software sys-
tems are designed for both powered and contactless appli-
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Operation
Time Max rate Energy Overhead (% time)
(ms) (samples/s) (mJ) Comm HMAC

seal 226.2 44.2 13.1 16.5% 50.3%
unseal 182.6 54.8 10.6 20.5% 58.0%
free 39.9 250.9 2.3 93.7%
add 142.9 70.0 8.3 26.1%
multc 111.3 89.8 6.4 33.5%
div 117.9 84.8 6.8 31.7%
prod 101.9 98.1 5.9 36.6%
if 112.6 88.8 6.5 33.2%

Sleep Actigraphy 600.9 16.6 34.7 31.1% 36.6%
Mean & Variance 1585.9 6.3 91.7 44.7% 12.1%
Zone Detection 2101.3 4.8 121.5 31.7% 30.8%

Flash card (read,1MB) 49.8 6.325
Flash card (write,1MB) 184.6 22.702

Table 1: Timing/energy results for individual PnT operations on a Nexus One smart phone using 10-sample
vectors, and for comparison (in the bottom two rows) for read and write operations on a generic flash-memory
card. The maximum sustainable sensing rate (sample/s) is also shown. For PnT, the key limiting factors are
the slow communication speeds of current smart cards and slow HMAC performance, which combined result
in 59-69% of the total latency for our test applications. As smart cards find increasing use in higher-rate
applications (like sensor data processing), we expect hardware performance to improve dramatically.

cations. To survive transient power failures, the JavaCard
environments store objects and variables in EEPROM by
default, which has much longer access times than RAM, espe-
cially for write operations (note that seal takes nearly twice
as long as unseal). JavaCard v2.2.1 allows simple arrays to
be declared as transient and stored in RAM; however, many
EEPROM accesses cannot be avoided (access to objects and
their non-array attributes). The potential for improvement
can be seen in the free operation—PnT’s only EEPROM-
free operation—which has more than 93% communication
overhead. The next generation of smart cards will allow
greater use of transient variables.

Finally, some smart-card companies have recently started
selling high-performance microSD products that can encrypt
voice and video traffic in real-time. These cards are not
currently programmable by third-party developers. While
communication, HMAC support, and mandatory EEPROM
accesses represent significant limitations to PnT’s current
processing performance, these limitations are neither fun-
damental nor likely to remain for long. When resolved, we
expect PnT to be able to support many more applications
with much higher data rates.

5. SECURITY ANALYSIS
To assess the security of PnT, we describe how PnT guaran-

tees the security properties set forth in Section 2.3, preventing
adversaries from succeeding in their attacks, some of which
were highlighted in Section 2.2. In particular, we discuss how
PnT achieves data confidentiality and integrity.

5.1 Data confidentiality
PnT protects the patient’s privacy by enforcing our first

security property SP1:Data Confidentiality. The adversary
may attempt to break this property either directly or in-
directly. In a direct attack, the adversary tries to directly
access the sensor data or any derived information, i.e., the

final or intermediate results of the data processing. PnT
prevents this attack by encrypting all sensor data whenever
it leaves trusted components: sensor nodes, the plug-in card,
and the back-end server. These components are assumed
to protect data privacy and integrity (assumptions A2 and
TR1 for the SN; A3 and TR2 for the card; A4 and TR3 for
the server). The adversary cannot succeed in this attack
unless she can break the chosen cryptosystem (e.g., AES).
The intermediate results are never exposed outside the card;
only data-independent references to the results are revealed.

In an indirect attack, the adversary tries to learn about
the sensor data and derived information by observing the
size or timing of responses by the plug-in card. The card
returns only two types of values: references (which are small,
opaque fixed-size objects), and unsealed results (which are
encrypted, fixed-sized vectors). Thus, the size of interme-
diate and final results provide no information; what can
the adversary learn from the computation time? Obviously,
more-complex computations take longer. However, this in-
formation is useless because the adversary already knows
what computation will be performed. For the basic opera-
tors (arithmetic, Boolean, and conditional operators) each
operation takes a fixed amount of time; the adversary learns
nothing about the data values. The if statement may seem
promising; if the adversary can learn which branch (then/else)
was chosen, it can infer properties of the data used in the
conditional expression. PnT prevents this inference by per-
forming both sides of the branches, and only retaining the
result of the correct branch.

Since most smart cards are designed to resist physical
attacks, we assume that physical side-channel attacks are
outside the capability of the adversary (A5).

5.2 Integrity
The provision of security property S2 (Sensor Data In-

tegrity) is straightforward because the encryption, path hash,
MAC, and timestamp protect data against modification,
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forgery, or replay (by assumptions H1, H2, A1, and A5). The
adversary cannot break the data integrity unless she can
break the chosen cryptographic primitives (A1) or the clock
within the sensor (H2, A2).

Security property S3 (Derived Data Integrity) is more
challenging due to its larger attack surface. We next discuss
possible attack methods and justify how PnT counteracts.

Wrong sensor type: When processing sensor data (body
temperature, for example) the adversarial mApp may at-
tempt to feed the processing routine with the wrong type
of sensor data (say, systolic blood pressure). It does so by
giving the wrong arguments to the seal operator: supplying
the wrong sensor ID or sensor data. If the wrong sensor ID
is given to the seal command, the card will fail to decrypt
the data and will return an error. If the correct sensor ID
is provided, but the sensor is the wrong type for the opera-
tions, the computation will proceed. Because the sensor ID
is included in the computation of the path hash, however,
the back-end server can immediately detect the use of an
incorrect sensor.

Stale sensor data: The adversary may provide a set of sen-
sor readings received in the past, rather than fresh readings.
The back-end server can detect this replayed or delayed data
immediately because the sensor timestamp is incorporated
into the (tmin, tmax) range reported in the package exported
by the card, as described in Section 3.

Wrongly ordered data: The adversary may provide fresh
data, from the right sensor, but reorder, repeat, or omit some
of the readings. When sensor readings are re-ordered, or
repeated, or omitted, the computation may result in different
values. PnT prevents this attack by adding the relative
sequence number of each datum into the path hash. So,
whenever a re-ordering or omission attack occurs, the path
hash will not match what is expected.

Wrong constants: The adversary can easily change the
processing algorithm by replacing one constant with another,
for example, to call div(r1,4) instead of div(r1,2). Since
the constant value is included in the path-hash computation,
this attack causes a mismatching hash value, detected at the
back-end server.

Wrong procedure: The adversary may manipulate the
procedure, change the order of operations, insert new oper-
ations, remove operations, and so on. These changes affect
the hash value and the back-end server can detect them.

Hash collision attack: The most sophisticated attack is
by an attacker who knows how all the above attacks can fail.
Here, the attacker strives to find a computation path that
has the identical hash value as the correct path, and that
produces a different result, hoping the result will be harmful
to the patient. She cannot succeed in this attack without,
in effect, breaking the underlying hash function (A1). The
point of cryptographic hashes, like SHA-256, is to make it
difficult to find such collisions.

6. RELATED WORK
Plug-n-Trust builds on and is inspired by a large body

of related work, providing support for trustworthy sensing,
secure multiparty computation, and virtualization.

6.1 Trustworthy mobile sensing
Several systems have worked towards providing mobile

sensing systems that can be trusted to provide users with

reliable data. A common approach is to have wireless sensors,
with or without hardware support for cryptography, sign their
own sensor readings [13,34,45]. Encryption can be used with
this sign-and-send model to protect privacy, and data can
be trusted, since it cannot be modified until it is delivered.
Unfortunately, this can result in a large volume of data that
can strain bandwidth limits and increase patient cost.

Another proposed approach [19] allows local processing
of sensor data within a trusted OS and hypervisor backed
by a TPM [41], without trusting the application. While
this allows greater flexibility than the simpler sign-and-send
systems, it also presents a much larger attack surface, and
other challenges faced by TPM-based and hypervisor-based
systems, which we describe in the following sections.

6.2 Trusted platforms
The Trusted Computing Group [41] has proposed using

an on-board hardware root of trust to establish a trusted
software stack (or Trusted Platform) using binary attestation.
Others [2,12,15,19] have extended this idea to mobile devices
(e.g., Mobile Trusted Module (MTM) [31]).

To date, in spite of the widespread availability of TPMs in
desktop and laptop computers, trusted platforms have failed
to find widespread use. MTMs have not been embraced
by industry, who have chosen instead to use legacy security
solutions. Debates about Digital Rights Management (DRM),
a primary driver for both TPMs and MTMs, have highlighted
another challenge, determining what entities should have
control over the TPM and its trusted software. Shubina, et
al. [37] conclude that error handling for TPM primitives is a
significant source of confusion for programmers, which has
further limited the use of TPMs. Furthermore, flaws have
been noted in the MTM specification [26] and attempts to
address them are ongoing.

ARM’s TrustZone [42] architecture also hopes to improve
the situation, by integrating MTM-like secure processing and
general purpose processing into a single chip. In addition to
tighter integration, TrustZone supports additional features,
including secure I/O to compatible peripherals (e.g., a secure
display or keyboard). The future of both TrustZone and
MTMs is unclear, but so far, neither has been widely adopted.

If MTMs do, at some point, become part of the mobile
computing landscape, approaches like Flicker [30] provide
an alternative to PnT; however, trusted computations in
Flicker must occur while the OS is suspended, leading to
competition that could render the mobile device unresponsive
and unusable when under high load.

Additionally, PnT could be implemented using TrustZone
or an MTM, rather than a smart card, for trusted process-
ing. These alternatives, especially TrustZone, may provide
better performance than current smart cards, while compli-
cating the bootstrapping of the system. The MTM’s root of
trust would likely reside with the smart-phone manufacturer
and/or service provider, whom the patient would have to
trust with her private medical data.

The new Google Wallet technology [22] incorporates a se-
cure coprocessor (the NXP PN65K) into the smart phone to
support secure payment transactions over Near Field Commu-
nication (NFC). The PN65K provides storage, computation,
and communication that is separate from the rest of the
phone, and Android allows access only from the trusted
Wallet app. It is not clear whether this chip could support
other secure operations, such as health-data processing, but

318



it seems unlikely that the Wallet business partners would
be willing to open this payment-focused technology to other
applications. In any case, as above, any phone-embedded
solution brings the handset manufacturer and network op-
erator into the trust relationships that should be narrowly
focused on the patient and the health provider.

6.3 Virtual machines
Another popular approach to securing computation is to

run applications in a virtual machine (VM), where sand-
boxing can limit the duration and severity of some attacks. If
the hypervisor is able to detect attacks, VMs can also simplify
recovery by reloading a fresh VM image [9]. This approach
is being advanced by a number of mobile-phone industry
initiatives, including a partnership between VMWare and
LG Electronics [44]; however, virtualization is not yet widely
available for mobile phones.

If (or when) mobile phone-based virtualization becomes
commonplace, sensitive or safety-critical sensor data could be
processed by a trusted hypervisor, instead of a smart card, at
the cost of diminished security. Virtualization is complicated
and even small hypervisors [19,38] must deal with much more
than security and privacy. Hypervisor complexity presents an
unnecessarily large attack surface for attackers to search for
vulnerabilities, and the consequences of a successful attack
on a hypervisor are no less severe than a successful attack
on a traditional operating system [43]. Protecting vulnerable
software with additional layers of vulnerable software may
provide enough security for some applications, but not highly-
sensitive or safety-critical computation.

Green Hills Software claims to have developed a formally-
verified “hacker-proof” hypervisor [25], that they market to
military and government customers. We were not able to
verify these claims; however, if these security guarantees
prove to be true and cell-phone manufacturers were willing
to virtualize their current OS on top of the Green Hills VM,
this approach may provide an alternative to PnT.

Traditional VM-based approaches also have performance
and usability disadvantages. Software-only approaches re-
quire a trusted software stack and inherit all of the challenges
of the trusted platforms described in Section 6.2. A trusted
VM also competes with other applications for resources, while
PnT provides its own computing resources by replacing an
existing microSD card with a combination microSD card and
secure processor.

Additional variants have been proposed that improve per-
formance. The “Divide” system from Enterproid [14] provides
“dual-persona” capability to Android phones – a promising
approach, which might be extended to support multiple per-
sona, e.g., work, play, finance, and health. However, Divide is
nonetheless an Android app and is thus vulnerable to rootk-
its and other mechanisms that compromise the underlying
operating system.

The “Cells” approach goes further, allowing a smart phone
to support multiple virtual phones (VPs), each of which
can run the full range of Android applications [5]. With
much lower overhead than a VM or hypervisor approach,
Cells would allow one VP to run mHealth applications and
keep them isolated from other activity on the phone. On
the other hand, the TCB is still pretty large and the effec-
tiveness of separation and containment still depends on the
security of the kernel and the Cells implementation. In that

regard, relative to PnT, it has the same drawbacks as other
virtualization methods.

6.4 Secure multiparty computation
Another closely-related approach to keeping sensitive com-

putations private is to use a secure multiparty computing
(SMC) system like FaeriePlay [24]. In addition to keeping
data confidential, SMC systems typically employ garbled
Boolean circuits (which also hide the computation being
executed). While attractive for mHealth-related applications,
evaluating programs as Boolean circuits comes at a high
performance cost, limits the kinds of computations that an
application can perform, and is difficult to verify.

Existing SMC systems overcome the verifiability challenges
by either evaluating the entire program circuit, one gate at
a time, inside a secure coprocessor like the IBM 4758 [24] –
which is impractical for today’s smart cards – or by using a
homomorphic encryption scheme [18]; some partially homo-
morphic encryption schemes are more practical [32], perhaps
even for use on mobile phones; however, it is not clear whether
these techniques are expressive enough to support general-
purpose computation. If approaches to SMC become more
practical in the future, they will provide another attractive
solution to this problem.

6.5 Control flow integrity
Finally, the path-hashing approach used in PnT is inspired

by the field of Control Flow Integrity (CFI). CFI systems [1,
16] use techniques like code rewriting and shadow call stacks
to ensure that executing programs execute within a defined
control flow graph. While PnT shares many of the same goals
with existing CFI approaches, all rely on the assumption
that the attacker cannot modify application code. Since we
assume a more powerful attacker who can modify application
code, we have chosen to make control flow verifiable rather
than preventing abuses.

7. DISCUSSION AND FUTURE WORK
This section discusses the limitations of Plug-n-Trust as

well as the extensions that are left as future work.

7.1 Limitations

Hiding computation type
While PnT protects the integrity and confidentiality of sensed
data and its processing, it does not hide the nature of the
data processing, which might also reveal the patient’s health
condition. Some applications may be coded in a general way
that limits the amount of leaked information, and garbled cir-
cuits (as mentioned in Section 6.4) could be used if and when
SMC techniques become more efficient. Meanwhile, code
obfuscation techniques [28] may provide a lower-cost alterna-
tive to make it significantly more difficult for an adversary
to identify the nature of PnT’s computations.

Data accessibility
One current limitation of PnT is the inability to display data
to the user. With an attacker that has full control over the
mobile phone, releasing data in a form that can be displayed
to the user also makes it available to the attacker, violating
our confidentiality goals. This limitation applies to all other
solutions unless the OS can be trusted to be free from mal-
ware. In theory, smart cards with a secure input or output
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channel (e.g., a button or light) can secure limited commu-
nications with the user [20]. (TrustZone [42] is capable of
securing I/O and hence can display data without an attacker
intercepting it, but has other limitations discussed above.)
New smart cards from Go-Trust support Near-Field Commu-
nication (NFC), which may allow the card to communicate
directly with nearby trusted peripherals [21].

The lack of data accessibility may also make debugging
more difficult. Path hashing makes it possible to detect that
a problem has occurred, but the specific attack or error may
not be clear. This is a common challenge in secure systems,
and techniques that embed more information about a specific
error are needed to ease this tension.

Data-dependent operation
Another challenge is supporting data-dependent communica-
tion. An application that, in the interest of efficiency, only
communicates when certain events occur (like an irregular
heart beat), will unavoidably leak information: the pres-
ence of a message reveals information about the data. A
potential compromise between efficiency and confidentiality
would support data-dependent events masked by interspersed
false events. Even with false event messages, this approach
would likely be vulnerable to a variety of statistical attacks.
This challenge is fundamental, because it represents a traffic-
analysis attack on the data stream between the card and the
back-end and there is no easy solution whenever the OS or
phone cannot be trusted.

The analog of data-dependent communication is data-
dependent loop bounds. PnT currently does not provide
any in-card support for loops, though applications are free
to execute commands in loops. When those loops depend
on the value of confidential data, the number of iterations
reveals information about the data, and could be used in PnT
to discover the value of any arbitrary data element. Data-
dependent loops with a bounded number of iterations can be
implemented in PnT by iterating the maximum number of
times, and using a conditional to turn the unneeded iterations
into no-ops. This approach is potentially inefficient.

Another analog of data-dependent communication is data-
dependent sensor management. In some applications, the
results of data processing or aggregation within the MN
may lead to a need to change the configuration of one or
more SNs, e.g., to turn it on or off, to change the sampling
rate, or to adjust the gain on a sensor. As with the above
examples, feeding such commands back through the mApp
would leak information into the untrusted MN. It would be
possible, though expensive, for the card to return a vector of
encrypted commands (one to be sent to each SN) each time
it completed processing a batch of sensor data. Such a plan
needs further investigation.

Cost
A search for current (late 2011) prices found microSD smart
cards selling for around $60-$70 per card. These cards are
new to the market and not in widespread use yet, while more
widely deployed (non-microSD) smart cards cost only $1-$10.
Mass production will have a similar effect on microSD smart
cards; their price already dropped 80% over the past year.

Denial-of-Service (DoS)
An attacker that has compromised the phone can deny the
application service in a wide variety of ways—to refuse deliv-

ery of messages, deny power to the card, and so forth—and
there is nothing the card can do to prevent it. Instead of
preventing DoS attacks, we hope to make them apparent, so
that the attack can be remedied.

A variety of approaches could be used to detect the pres-
ence of a DoS attack. In most areas, mobile phones enjoy
better than 90% network coverage and no data delivered for a
long time might be a sign of DoS. If applications intentionally
wait to deliver data, PnT could also send heart-beat mes-
sages. In any event, it is impossible for PnT to discern the
difference between a DoS attack and a device failure. When
a potential DoS attack is detected, notifying the patient will
likely be necessary to determine the nature of the problem.

Theft or loss
An attacker may steal the smart card, the phone, or sensor
nodes to learn about the patient’s medical condition or to
inject invalid data. Although PnT still protects the patient’s
privacy in face of theft (see Section 5.1), the attacker may
carry the sensors, the phone, and the smart card and monitor
her own medical condition, and submit the data to the back-
end server, impersonating the owner of the smart card. In
this case, reporting lost cards to the care provider will be
the only effective measure.

To better counteract theft, the smart card should be able
to authenticate the user. Since the phone can be malicious,
the smart card and the patient cannot rely on the phone for
mediating this authentication process. A direct method for
the authentication involves some biometric, but at this time
it is unfeasible to equip the card with a biometric sensor
(e.g., fingerprint scanner) and necessary software. One could
employ a physiology-based authentication scheme [40], which
uses sensor data as a biometric to ensure authenticity.

Tolerance to data loss
Using sequence numbers and timestamps, PnT ensures de-
tection of any re-ordering, repeating, or omission of sensor
readings (within a given time window). While this feature is
essential for critical monitoring applications, there are cases
when some data loss should be tolerated. Since packet loss
is not unusual in wireless communication, discarding all the
sensor data because of one missing datum can significantly
degrade data availability. Therefore, it is beneficial if PnT
can support a computation task that is tolerant of a few miss-
ing data elements. We plan to extend our sequence-ensuring
mechanism so that the computation is accepted if the number
of missing data elements is below a certain threshold.

7.2 Extensions
There are several other extensions that we hope to address.

Complex computation support
PnT can easily be extended to support real numbers as well as
integers. It can also be extended to support built-in operators,
such as FFT or other signal-processing functions. We plan to
add more mathematical operations such as exponentiation,
logarithms, trigonometric functions, and set operations, and
the ability to handle multi-datatype vectors.

However, in spite of these extensions, PnT is unlikely
to fit all applications. Some computationally heavy and
data intensive computations (like some machine-learning
algorithms) may be too complex to perform in a small smart-
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card, and too complex to verify via path hashing. These
analyses may be done by the back-end server.

Medical actuator support
Another important extension will support medical actuators,
like insulin pumps, without requiring the back-end service to
be in the loop. For this to work, the actuator devices must
be paired with the card (to exchange keys), and the device
should be able to verify the result derived by the PnT card
as the back-end server does, that is, by checking the path
hash. Path hashes may be pre-computed and pre-installed
on the actuator device, reducing the computational cost that
verification would place on a resource-constrained platform.

Language and compiler support
Currently, applications interact with PnT by specifying in-
dividual PnT commands; the result looks something like
assembly language. We plan to improve this situation by pro-
viding higher-level programming interfaces that allow system
designers to describe how data should be processed with-
out worrying about sealing and unsealing data, unrolling if
statements, or forgetting to free allocated references.

Internal sensors
Finally, we plan to make the wealth of sensor data provided
by a phone’s internal sensors accessible to PnT. Without
additional hardware, these sensors cannot be trusted if the
phone’s OS has been compromised; however, many attacks
compromise only the application. We plan to support mul-
tiple levels of trust in PnT, allowing data from less-trusted
sensors to be processed by more risk-tolerant applications.

Multiple-task support
In practice, the patient’s condition may require multiple
monitoring tasks to run simultaneously. For example, the
mobile node may need to analyze ECG data continuously
while blood-pressure level is monitored intermittently. We
plan to extend PnT to support multiple monitoring tasks
by allowing the SD card to maintain multiple contexts of
computation, by introducing a task-reference by which the
applications can specify the context of each operation.

8. SUMMARY
The connectivity and processing provided by patient-carried

smart phones is critical to the success of many mHealth
applications; however, as private and safety-critical data
processing moves onto commodity smart-phones that are
vulnerable to software-based attacks, security and privacy
concerns must be addressed.

In this paper, we address this challenge in three ways:
First, we describe the design of Plug-n-Trust (PnT), a novel
and practical approach to protecting both the confidential-
ity and integrity of safety-critical medical sensing and data
processing on vulnerable mobile phones. Second, our imple-
mentation and experiments show that PnT is feasible—using
current Java-based smart cards and Android phones—for ap-
plications with low-to-medium data-rate requirements, and
we identify opportunities for dramatic performance improve-
ments that will allow PnT to support more data-intensive
sensing applications. None of PnT’s performance challenges
are fundamental, and all will be eliminated as smart-card
technology evolves. Third, we provide a security analysis
demonstrating that PnT meets the desired security goals.

PnT is applicable to a wide range of applications, not lim-
ited to healthcare, and is amenable to a range of deployment
scenarios that include secure elements built into phones as
well as the plug-in card model we have proposed.
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