On-chip Lightweight Implementation of
Reduced NIST Randomness Test Suite

Vikram B. Suresh, Daniele Antonioli* and Wayne P. Burleson
Dept. of Electrical and Computer Engineering, University of Massachusetts, Amherst, USA
*Dept. of Electronical, Electronic and Information Engineering,University of Bologna, Italy
{vsuresh, burleson}@ecs.umass.edu, daniele.antonioli@studio.unibo.it

Abstract— On-chip Random Number Generators (RNGs) are
critical components in lightweight ubiquitous devices like RFIDs
and smart cards. These devices require low cost test
methodologies and security against cryptanalytic and invasive
attacks. In this work we propose an on-chip implementation of a
reduced set of NIST-SP-800-22 randomness test suite to provide
on-line RNG testing for low cost security devices along with run-
time monitoring of RNG performance. The on-chip NIST module
monitors the effect of dynamic variation of operating condition
and time dependent wear-out on RNG circuits. It indicates
invasive attacks on RNG and allows the secure system to take
protective measures. Six NIST tests are optimized to a hardware
design friendly format, but in compliance with the NIST
standard. The lightweight implementations reduce complex
statistical and arithmetic operations of conventional NIST tests to
a series of bit stream count and compare operations. A cycle-to-
cycle serial test of incoming bits from RNG eliminates need for
additional storage. A partial re-configurable feature is designed
to set the pass/fail threshold for each test depending on the
system requirements. The on-chip NIST module, although not
exhaustive, is an effective layer of validation and security for
RNG circuits. The six 128-bit tests implemented in 45nm NCSU
PDK have a total synthesized area of ~1926.sq.um for an
optimized frequency of 2GHz. The total dynamic power is
3.75mW and leakage power is 10.5pW. At 2Gbps, the NIST
module consumes 1.87pJ/bit. The lightweight ultra-low power
implementation is scalable for larger input bit samples.

Keywords- PRNG, TRNG, NIST, Statistical Test

L INTRODUCTION

Random Number Generators (RNGs) are cryptographic
primitives used to generate random keys, IDs and nonces.
RNGs are generally classified into two categories, Pseudo
Random Number Generators (PRNG) and True Random
Number Generators (TRNG). PRNG are deterministic systems
based on algorithms and generate bit sequences with a random
distribution over a large sample of bits. TRNGs, on the other
hand, harness random physical phenomena to generate random
bits. On-chip noise, clock jitter and stray electromagnetic field
are some of the sources of randomness for a TRNG. TRNG
circuits are often used to periodically seed a PRNG, generate
nonces for security protocols and in data encryption/decryption.
The most commonly used TRNG circuits are based on Ring
Oscillators which sample and digitize on-chip jitter noise to
generate random bits [1, 2]. Ring Oscillator based circuits are
also popular for FPGA based implementations [3, 4].

Noise amplifiers and Analog-to-Digital Converters (ADC)
are used to sample on-chip thermal and shot noise to obtain

random samples [5, 6]. Digital circuits for sampling thermal
noise use metastable elements like a pair of cross coupled
inverters [7, 8, 9]. Power up state of SRAM [10], read-refresh
collision in DRAM [11] and Random Telegraph Noise (RTN)
in Contact Resistive RAM [12] are examples of memory-cell
based TRNG circuits.

The conventional metrics for evaluating an analog/digital
circuit are area, power and performance. However, RNG
circuits need a fourth metric which measures the degree of
randomness. The most basic metric of randomness is the
Shannon bit entropy which measures the proportions of bit 0's
and 1's in a sequence to give an entropy value in the range of 0
to 1. However, equal proportions of 0’s and 1°s do not validate
all possible weaknesses of an RNG. Sophisticated statistical
tests are required to quantify the various aspects of randomness
like correlation, run length and random distribution of bits. The
most popularly used test suites are the RNG test suite by
American National Institute of Standards and Technology
(NIST) [13] and the DIEHARD Tests [14]. These test suits
evaluate large sequences of bit streams for a pre-defined null
hypothesis to predict the randomness of the source. The NIST
test suits perform an exhaustive statistical analysis and hence
are computation intensive. In [15], approximations in the test
suite are proposed for a computation friendly implementation.
Byte-wise implementation [16] and parallelizing the tests [17]
further improve run time of NIST test suite. A test
methodology for TRNG circuits in compliance with NIST
standards is proposed in [18], while a run-time hardware
implementation for NIST tests on FPGA is proposed in [19].
Researchers have also highlighted approximation errors in
frequency tests in NIST suite [20] and have proposed second
level tests for a more complete validation for randomness of bit
sequences [21, 22].

In this work, we propose an on-chip lightweight
implementation of a reduced set of NIST Test suite. The
implementation is targeted to provide a run-time cycle-to-cycle
evaluation of on-chip TRNG circuits at very low area and
energy cost. The rest of this paper will discuss the motivation
behind this work in section II, an introduction to reduced NIST
test suite in section III, optimization and digital logic
implementation in section IV, implementation results in section
V, conclusion and future work in section VI.

II. MOTIVATION

Random Number Generators are critical blocks in a
variety of cryptographic systems. They provide keys or IDs to
initiate an encryption algorithm or a secure communication

This work is funded by Task.ID. 1836.074, Texas Analog Center of Excellence, Semiconductor Research Corporation.

978-1-4799-0601-7/13/$31.00 ©2013 IEEE

protocol. As a result, weak RNGs can be a single point of
failure of the entire system. The weakness of an RNG can be
due to a weak algorithm (PRNG), a bad source of randomness
or process induced variation in sample and digitize circuit
(TRNG). The algorithm used in a PRNG can be validated
before implementing in a system through regression tests or
statistical and empirical analysis. However, TRNG circuits
depend on physical implementation and local sources of
randomness. Therefore, the statistics of these circuits have to
be validated post device fabrication. Unlike conventional VLSI
testing methodologies, the statistics of TRNG circuits cannot
be tested using fault models. Large sets of data have to be
generated and validated using statistical test suite. Due to
increasing variation in fabrication process, testing a larger
sample of chips does not necessarily guarantee a good TRNG
in every chip. An exhaustive post-fabrication test will increase
the test time and hence the cost per chip. In this work we
propose a lightweight implementation of six (out of fifteen)
statistical tests in the NIST test suite. The proposed
implementation is not a replacement to the exhaustive testing
provided by the NIST standards. However, they encompass the
mandatory tests listed in FIPS 140-1 standard [30] to provide a
layer of security for lightweight TRNG implementations and
detect abnormal behavior due to variation in fabrication
process, dynamic variation in environmental conditions during
run-time and malicious attacks on TRNGs.

RNG circuits are used in ubiquitous devices like smart
cards, RFID tags and sensor nodes. These devices are
extremely low-cost and cannot afford to go through an
extensive post-fabrication testing process to validate the TRNG
circuits. They are also highly constrained in area and may be
passively powered or battery operated. Therefore, a lightweight
on-chip NIST module provides efficient statistical validation
for the generated random bit stream. A reduced test
implementation operating cycle-to-cycle on fewer samples
eliminates the need for additional storage elements. With
advancing CMOS technologies, transistors are increasingly
sensitive to dynamic variation in operating temperature and
power supply noise. Further, time dependent wear-out like
Negative Bias Temperature Instability (NBTI) and Hot Carrier
Injection (HCI) also affect circuit performance. A one-time
statistical test performed during the chip testing phase does not
provide constant monitoring of circuit behavior. A good TRNG
could degrade intermittently due to temperature or voltage
variation and permanently degrade over time due to wear out.
An on-chip test module can be used to continuously monitor
the output of RNG. The cryptographic system using the RNG
can make an informed decision about the randomness of inputs
in run-time. TRNG in Intel’s Ivy Bridge Microprocessor
incorporates a health check by counting empirically arrived bit
patterns [29]. The health check only detects extreme cases of
bias with Shannon entropy less than 0.5. The TRNG module
depends on AES based conditioning for entropy improvement.
In [19], a complete NIST test suite implementation has been
proposed for real-time statistical test. However, such an
implementation adds tremendous area overhead to the system.
The authors indicate that only 2 NIST tests could be ported
completely on a Xilinx Virtex II Pro FPGA V2P30. The test
suite implementation itself consumes a large area of the order
of 1000’s of flip flops.

As discussed earlier, RNG could serve as a single point of
failure and hence provides an avenue for malicious attack on
cryptographic systems. In [23], J. Kelsy, et. al discuss in detail
the various cryptanalytic attacks on PRNG. A practical attack
on ring oscillator based TRNG is demonstrated in [24]. The
authors present a real attack on EMV card using frequency
injection. The randomness of the TRNG is compromised and
key space of the secure micro controller is reduced from 2* to
3300. Other practical attacks have also been reported in
literature, like breaking weak RNG in MIFARE card [25],
cavesdropping on a weak PRNG on EPC Gen2 compliant
RFID tag [26] and contactless electromagnetic attack on ring
oscillator based TRNG [27]. Commercial microprocessor
manufacturers use on-chip sensors (temperature, voltage) to
detect invasive attacks. An on-chip NIST module can detect
variation in randomness, which is the symptom of an attack,
thereby protecting the device against all sources of attack. The
randomness information can be used by the secure module
(Crypto module/ Micro controller) to take necessary evasive
action, like a Denial of Service to the attacker and thereby
prevent economic and personal identity loss. In a shared key
protocol for secure communication, the system receiving a key
can use on-chip NIST module to get a measure of the
randomness. Based on the NIST test results, the received key
can be used or a request can be made for a new key. All
systems using a TRNG employ some form of calibration or
post-processing to mitigate the effect of physical variation on
the statistics of RNG. The post-processing techniques could
vary from very lightweight XOR function or von Neumann
corrector [28], to robust entropy extraction using HASH
functions or AES [29]. While this is a fault tolerant approach to
entropy extraction, an on-chip NIST module allows multiple
post-processing units to be implemented and then select the
appropriate one based on the quality of the TRNG. The other
blocks can be powered OFF to reduce leakage power.

Thus, on-chip statistical test suite is imperative for secure
computation on lightweight devices with scaling technology
and increasing invasive attacks. We propose a lightweight
implementation of 6 statistical tests from the NIST test suite.
The tests are chosen based on the minimum sample set
recommended by NIST and the complexity of storage and
computation in terms of ultra-low power implementation. Each
of the 6 tests is reduced to obtain a hardware design friendly
structure. However, the tests comply with the NIST standard
and do not result in a deviation in accuracy of the results. The
reduced implementations do not require any complex
arithmetic or statistical computation and result in a very low
area and power overhead. Although the reduced test set is not
as exhaustive as using the entire NIST test suite, it provides an
effective layer of security and monitoring for lightweight RNG
implementations.

III. REDUCED NIST TEST SUITE

Testing randomness of a bit sequence is as challenging as
generating them. Randomness is a relative term and there is no
definite metric to quantify it. Depending on the field of
application, tools from probability theory are used to develop
Statistical Hypothesis Testing (SHT) or Statistical Testing
(ST). These tests provide a hypothesis of whether the bit
sequence can be considered random or not, with a specific level

94 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

of confidence. The Statistical Test Suite standardized by the
American National Institute of Standards and Technology
(NIST) and the DIEHARD statistical test suite developed by
George Marsaglia are two of the most popular statistical test
suites used for randomness testing. In this work, we adapt the
NIST tests to design a lightweight randomness test block.

The NIST test suite consists of a collection of fifteen
statistical tests. Each of these tests hypothetically quantifies a
certain aspect of randomness. Given a bit sequence a of length
n, an assumption of randomness, defined as null hypothesis
H(0), is fixed. A counter assumption is defined as alternate
hypothesis H(a) along with a significance level alpha (a)). The
value of a, also called critical value, is fixed apriori in the
range of [0.001, 0.01]. The bit sequence from an RNG is
analyzed using a specific data processing technique for each
test. The output of the data processing stage, variable X, is used
as one of the inputs to either Complimentary Error Function
(erfc) or the Upper Incomplete Gamma Function (igamc)
depending on the test. The output of this stage is called the P-
value. This value is compared with the constant significance
level a. If the P-value is greater or equal to o, the null
hypothesis is accepted with a confidence of 1-a, else is rejected
with a confidence of 1-a, Fig. 1.

A summary of the tests in the NIST suite with the null
hypothesis for each test is shown in Table 1. Each test in the
NIST suite requires a pre-defined minimum sample set of size
ranging from 100 bits to 100,000 bits. The size of hardware for
computation and data storage required for a test is proportional
to the size of the data sample. Since the focus of this work is to
realize a test module for ultra-lightweight applications, we
choose six of the fifteen NIST tests which are viable for
lightweight implementation. The reduced set of NIST tests
consist of Frequency Monobit Test, Frequency Block Test,
Runs Test, Test for Longest Runs of Ones, Binary Matrix Rank
Test and Non Overlapping Template Matching. The reduced
set includes the four tests mandated by FIPS 140-1 standard.

As described, the data processing stage of NIST tests
consists of either the Complementary Error Function (erfc) or
the Upper Incomplete Gamma Function (igmac). These two
functions are the bottleneck in computing the P-value for each
test. For a given sample size n, the test is considered to be
passed if the P-value is greater or equal to target critical value
o. To reduce the computation required, we fix the value of n
and compute the range of input X to the erfc or igmac which
lead to a P-value greater than the critical value of o. This
completely eliminates the need for complex computation of
error function or gamma function, thereby significantly
reducing the complexity of hardware required to implement the
tests. In the proposed lightweight implementation, all
computations and test results are quantified in terms of the
value of X instead of the P-value. Since the value of Xand the
corresponding P-value have a one-to-one mapping, the
accuracy of the results is not lost. The partial reconfigurable
feature allows the user to set the critical value a depending on
the need of the application to make the tests more stringent.
Modifying the critical value only varies the bounds for the
input to the complex function. The bounds can be set one-time
by blowing fuses or can be configured using registers to store
the values. Further, all computations are performed serially on

the incoming bits from the RNG. This eliminates the need for
additional storage devices except for byte-wide shift registers.

X
< RNG >_' Data. | X
Processing

erfc(X) or
igmac(X)

P-value

P-value 2 a

Pass test with a
confidence 1-a

NO

Fail test with a
confidence 1-a
Figure 1: Generic Flow of NIST Tests

TABLE 1: SUMMARY OF NIST SP 800-22 TEST SUITE

Test Null Hypothesis
Frequency Monobit Test | Good proportion of 1s and 0s
Frequency Block Test Good proportion of 1s and 0s
within N blocks of M-bit
Runs test No clusters of 1s and/or 0s in
a sequence.

Test for the Longest Run | No clusters of 1s and/or 0s in
of 1s in a Block N blocks of M-bit
Binary Matrix Rank Low linear dependence

Test between sub-strings, sub-

matrices with high rank

Discrete Fourier
Transform (Spectral) Test

Balanced amount of peaks in
the frequency domain

Non Overlapping Not too many non-
Template Matching Test | overlapping equal sequences
Overlapping Template Not too many overlapping

Matching Test equal sequences

Maurer's Universal Sequence cannot be

Statistics Test significantly compressed
Linear Complexity Test Sequence with long LFSRs
Serial Test Every m-bit template has equal

probability to arise

Approximate Entropy Test | Non-regular occurrence of the

same overlapping template

Cumulative sum excursion
near zero

Cumulative Sums Test

Random distribution of visits
among cycles to eight states

Random Excursion Test

Random distribution of visits
among cycles to eighteen states

Random Excursion
Variant Test

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 95

IV. LIGHTWEIGHT IMPLEMENTATION OF REDUCED NIST
TEST SUITE

In this section a detailed description of the lightweight
implementation for Frequency Block Test (FBT) is presented.
The implementation of the other five tests is also based on
similar techniques. For a detailed statistical analysis of each
test, interested readers may refer to [13].

The FBT checks for a good proportion of 1’s and 0’s in
blocks of random bits. Given a sample bit stream of length ,
the test breaks the bit stream into N blocks of size M bits. For
each block the distance of 1’s proportion (or 0’s) over M-bit
from 0.5, the expected mean value is computed. The partial
results are squared and accumulated; the resulting number is
multiplied by a constant and used as one input to igmac. The
gamma function returns the P-value that is compared with the
pre-defined significance level, o. If the P-value is greater or
equal to o, the bit stream is predicted to be random with a
confidence of 1-a. The above steps can be reduced to
accommodate a lightweight hardware implementation as
follows:

Let n = 128 (Total number of bits) and
M = 8 (Number of bits per block)

n
N = i 16 is the Number of non — overlapping blocks

Assuming a = 0.01, the test passes for P —value > 0.01,

N 2
In the Frequency Block Test, P — value = igamc <E'X7>

. N x*
Hence,igamc > >0.01

where x? is the output of the data processing stage

Computing the inverse of igmac(), x* <16

N

132

In the Frequency Block Test,X = x> =4 XM X Z (Tfi - E)
i=1

2

N
1
4 XM X Z(T[i—i) <16

=1

Hence,

where m; is the ratio of 1's ineach of the N blocks.

If a counter c is used to count the number of 1’s in each block,

N 2
4><M><Z(5-1> <16
/. \872) =

N
Z(c— 4)% < 32,is the condition for passing FBT
i=1

The complex computation to estimate the P-value and
hence deem a bit stream to pass/fail the Frequency Block Test
can be reduced to a series of counter, offset calculation and
squaring operations. Since the number of bits in the sample, n
and the block size M are positive whole numbers; all
computations involve whole numbers allowing a simpler
combinatorial logic based implementation. A similar
calculation is performed for the other five NIST tests to reduce

the computation and design a lightweight implementation.
Further, the NIST module can be turned ON intermittently to
reduce power overhead.

By calculating the bounds of input to igmac function, the
FBT is optimized to a series of count, accumulate and compare
operations as shown in Fig. 2. The complex igmac function is
avoided enabling a lightweight implementation. The hardware
implementation for each stage of FBT is as show in Fig. 3.

(Count number Calculate Square the
RNG ofl's L—Joffset from ‘4’L| difference
c d=(c-4) s

l

Accumulate
(every 8
cycles)

Pass test with a
confidence 1-a

NO
Fail test with a
confidence 1-a

Figure 2: Flow of optimized Frequency Block Test

c[2] -
c[1]— 2
c[O]_}d[:
RNG_bit —»len
3-bit Counter | €[2:0] NC[Z]D_
Clk —> c[2:0] clo] _ >_ d[1]

~c[1]

c[o] — d[0]

Figure 3a: Enable counter (c¢) and Variance Calculator (d)

di2] di2] d[0] d[1] d[0] o d[o]

sle

s[4] s[3] s[3] s[1] s[0]

Figure 3b: Squaring the variance (s)

0 0 0 s[4] s[3]s[2]s[1]s[0]

Enable ever
8-bit accumulator v

8 cycles
~
wv
%5
-y
B o2
g8 S . Enable every
= comparator
8§57 P 128 cycles
|1
]
5§
)
o
fbt_result

Figure 3¢: Accumulator and Comparator

Figure 3: Digital logic for lightweight FBT implementation

96 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

TABLE 2: INPUT TO ERFC/IGMAC FOR DIFFERENT CRITICAL VALUE SETTINGS

Test o =0.001 a=0.0025 a=0.0040 a=0.0055 0=0.0070 o =0.0085 a=0.010
Frequency Mono-bit Test 2.3268 2.1378 2.0352 1.9631 1.9070 1.8608 1.8214
Frequency Block Test (M=§) 19.6262 18.2279 17.4898 16.9802 16.5888 16.2698 16.0000
Runs Test 2.3268 2.1378 2.0352 1.9631 1.9070 1.8608 1.8214
Test for Longest Runs of Ones 8.1331 7.1602 6.6582 6.3168 6.0574 5.8481 5.6724
Non Overlapping Template 13.0622 11.8872 11.2726 10.8507 10.5280 10.2660 10.0451
Matching Test (m = 9)
Binary Matrix Rank Test 6.9078 5.9915 5.5215 5.2030 4.9618 4.7677 4.6052
(n=608 M=0Q =4)

Similar to Frequency Block Test, other NIST tests are also
reduced to facilitate optimum hardware implementation. All
the tests operate on each incoming bit from the RNG serially,
thereby minimizing additional hardware to store the bits. Only
for the Non Overlapping Template Matching test and the
Binary Matrix Rank test, a 10 bit and 8 bit shift registers are
used respectively to store the previous bits. The counters and
control logic is shared across different tests to further optimize
area and power.

The partial reconfigurable feature of the reduced NIST test
module provides the flexibility of choosing a different critical
value a for each test based on the requirement of the
platform/application. The reconfigurable bound registers in
each test module allows appropriate value of a to be set as the
threshold critical value for test pass/fail. The calculated upper
bounds for the inputs to erfc/igmac functions for each test for
different critical values are shown in Table 2. Although the
calculated input bounds have fractional values, the final
hardware counter/comparator bounds will be whole numbers.

V. LOGIC IMPLEMENTATION AND RESULTS

The proposed lightweight implementation for the reduced
NIST test suite consisting of six tests was designed in Verilog
and verified for functionality using ModelSim. The designs
were synthesized in Synopsys Design Compiler using the 45nm
SOI NCSU/OSU Open Source Standard Cell Library. The
synthesized designs were optimized for a cycle time of 0.5ns
(2GHz).

The area and power numbers for each 128 bit test are as
shown in Fig. 4 and Fig. 5 respectively. The lightweight
implementation results in a synthesized area ranging from
240pm? to 460pm? for each test. The shared control logic and
counters reduce the overall implementation area. The common
counter and control logic consume an area of around 200um’
resulting in the overall NIST module area of 1926um’. This
translates to 1026 NAND gates equivalent in 45nm technology.
The active power for each test is of the order of 0.4mW to
0.8mW. All the tests are designed to operate in parallel,
resulting in an overall active power of 3.75SmW for the NIST
module operating at 2GHz. The overall cell leakage is
~10.5uW which is 0.28% of the total power.

Since the target applications include passively powered and
battery operated devices like RFIDs and smart cards, energy/bit
is an important metric. The 128-bit reduced NIST module
operating on 2Gbps consumes 1.87 pJ/bit.

The proposed implementation is scalable to larger number
of bit samples as well. Depending on the number of bits # and
block sizes, the bounds for each test varies.

450

E 400 -

=

= 350

< 300 -

<

Z 250 -

<

g 200 -

3150

D

S 100 - —

g,

& 50 - —

0 - : .
- [o o o o
. IR~ @ @,) 7
ge] = &8 s IR
S = 3 2 0 3] LS oo
=2 o9 s S 9] S a3
='e) = - e S = &£
D= = = &~ = 2 < Zt ES
2 = M S 2 = T oL
=S = = = > ==
= ol 2 =
gm

Figure 4: Synthesized area of lightweight NIST test implementation

~
n
N
n

u Active Power

~
~

" Leakage Power

-
n
—
n

(A1) 1omog adeyea|

i
n
b
n

Active Power (mW)

=
=

Frequency Monobit
Test

Frequency Block Test

Runs Test

Test for Longest Runs
of Ones

Binary Rank Test

Non-overlapping

Template Matching

Test

Figure 5: Active and leakage power of lightweight NIST test
implementation

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 97

The Binary Matrix Rank Test and Non Overlapping Template
Test are implemented with a minimum bit sample size greater
than 512 bits. The optimized tests can be scaled for larger bit
sequence range at the cost of increased area and power. The
area, power and energy/bit for 256-bit and 512-bit
implementations are as shown in Table 3.

TABLE 3: AREA, POWER AND ENRGY/BIT FOR 256 BIT AND 512 BIT
IMPLEMENTATIONS IN 45NM TECHNOLOGY

Bit length 256 bits 512 bits
Area (um?) 2394 2787
Power (mW) 4.03 4.37
Energy/bit @ 2Gbps (pJ/bit) 2.01 2.18

VI. CONCLUSIONS AND FUTURE WORK

A lightweight implementation of reduced set of NIST
randomness test suite is proposed in this work. The
implementation of the six NIST tests is based on optimized
calculations to bypass the computation intensive erfc and
igmac functions. The modified critical value is used as a
bound for setting the test pass/fail threshold. The complex
statistical computations are converted to a series of count, add
and compare operations implemented using combinatorial
logic. The design is further optimized for a fixed bit sample
size and share global counters and control signals. A partial
reconfiguration feature allows the critical value to be changed
in the form of modified bounds for each test. The tests operate
serially on each incoming bit from the RNG, thereby avoiding
additional hardware for storage. The design for 128-bit tests
has a synthesized area of 1926um” for an optimized cycle time
of 0.5ns. The six tests operate in parallel consuming an active
power of 3.75mW and leakage power of 10.5uW. As part of
the future work, we propose to explore lightweight
implementation of other statistical tests from NIST and
DIEHARD test suites and expand to second level tests for
analyzing the distribution of P-values.

REFERENCES

[11 B. Sunar, W. J. Martin, and D. R. Stinson, “A Provably Secure True
Random Number Generator with Built-In Tolerance to Active Attacks,”
1IEEE Transactions on Computers, vol. 56, no. 1, Jan. 2007.

[2] T. Amaki, M. Hashimoto, and T. Onoye, “An oscillator-based true
random number generator with jitter amplifier,” in 2011 I[EEE
International Symposium on Circuits and Systems (ISCAS), 2011.

[3] N.Bochard, F. Bernard, and V. Fischer, “Observing the Randomness in
RO-Based TRNG,” in International Conference on Reconfigurable
Computing and FPGAs, 2009. ReConFig 09,2009, pp. 237 —242.

[4] M. Jessa and L. Matuszewski, “Enhancing the Randomness of a
Combined True Random Number Generator Based on the Ring
Oscillator Sampling Method,” in 2011 International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2011,.

[51 F. Pareschi, G. Setti, and R. Rovatti, “Implementation and Testing of
High-Speed CMOS True Random Number Generators Based on Chaotic
Systems,” IEEE Transactions on Circuits and Systems Dec. 2010.

[6] W. Chen, et. al, “A 1.04 #x00B5;W Truly Random Number Generator
for Gen2 RFID tag,” in Solid-State Circuits Conference, 2009. A-SSCC
2009. IEEE Asian, 2009, pp. 117 —120.

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

S. Srinivasan, et. al, “2.4GHz 7mW all-digital PVT-variation tolerant
True Random Number Generator in 45nm CMOS,” in /EEE Symposium
on VLSI Circuits (VLSIC), 2010.

C. Tokunaga, D. Blaauw, and T. Mudge, “True Random Number
Generator With a Metastability-Based Quality Control,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 1, pp. 78 -85, Jan. 2008.

V. B. Suresh and W. P. Burleson, “Robust metastability-based TRNG
design in nanometer CMOS with sub-vdd pre-charge and hybrid self-
calibration,” in Intn'l Symposium on Quality Electronic Design 2012.

D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State as
an Identifying Fingerprint and Source of True Random Numbers,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1198 —1210, Sep. 2009.
C. Pyo, S. Pae, and G. Lee, “DRAM as source of randomness,”
Electronics Letters, vol. 45, no. 1, pp. 26 —27, 2009.

C.-Y. Huang, W. C. Shen, Y.-H. Tseng, Y.-C. King, and C.-J. Lin, “A
Contact-Resistive Random-Access-Memory-Based True Random
Number Generator,” IEEE Electron Device Letters, Aug. 2012.

National Institute of Standards and Technology, “A Statistical Test
Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications.” Apr-2010.

G. Marsaglia, “DIEHARD: a battery of tests of randomness”,
http://www.stat.fsu.edu/pub/diehard/.

F. Pareschi, R. Rovatti, and G. Setti, “On Statistical Tests for
Randomness Included in the NIST SP800-22 Test Suite and Based on
the Binomial Distribution,” [EEE Transactions on Information
Forensics and Security, vol. 7, no. 2, pp. 491 =505, Apr. 2012.

A. Suciu, K. Marton, I. Nagy, and I. Pinca, “Byte-oriented efficient
implementation of the NIST statistical test suite,” in /EEE International
Conference on Automation Quality and Testing Robotics, 2010.

A. Suciu, I. Nagy, K. Marton, and I. Pinca, ‘“Parallel implementation of
the NIST Statistical Test Suite,” in 2010 IEEE International Conference
on Intelligent Computer Communication and Processing (ICCP), 2010.
K. Udawatta, et. al, “Test and validation of a non-deterministic system -
True Random Number Generator,” in High Level Design Validation and
Test Workshop, 2008.

D. Ho oleanu, O. Cre , A. Suciu, T. Gyorfi, and L. V cariu, “Real-Time
Testing of True Random Number Generators Through Dynamic
Reconfiguration,” in 2010 13th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools (DSD), 2010.

F. Pareschi, R. Rovatti, and G. Setti, “On the approximation errors in
the frequency test included in the NIST SP800-22 statistical test suite,”
in [EEE Asia Pacific Conference on Circuits and Systems, 2008.

F. Pareschi, R. Rovatti, and G. Setti, “Second-level NIST Randomness
Tests for Improving Test Reliability,” in IEEE International Symposium
on Circuits and Systems, 2007. ISCAS 2007, 2007, pp. 1437 —1440.

F. Pareschi, R. Rovatti, and G. Setti, “Second-level testing revisited and
applications to NIST SP800-22,” in [8th European Conference on
Circuit Theory and Design, 2007. ECCTD 2007, 2007, pp. 627 —630.

J. Kelsey, et. al, “Cryptanalytic Attacks on Pseudorandom Number
Generators,” in Fast Software Encryption, Fifth International, 1998.

A. T. Markettos and S. W. Moore, “The Frequency Injection Attack on
Ring-Oscillator-Based True Random Number Generators,” in
Proceedings of the 11th International Workshop on Cryptographic
Hardware and Embedded Systems, Berlin, Heidelberg, 2009.

T. Kasper, M. Silbermann, and C. Paar, “All You Can Eat or Breaking
a Real-World Contactless Payment System,” in Financial Cryptography
and Data Security, R. Sion, Ed. Springer Berlin Heidelberg, 2010.

J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti, “A
Practical Implementation Attack on Weak Pseudorandom Number
Generator Designs for EPC Gen2 Tags,” Wireless Pers Commun, 2011.
P. Bayon, et. al, “Contactless Electromagnetic Active Attack on Ring
Oscillator Based True Random Number Generator,” in Constructive
Side-Channel Analysis and Secure Design, W. Schindler and S. A. Huss,
Eds. Springer Berlin Heidelberg, 2012, pp. 151-166.

V. B. Suresh and W. P. Burleson, “Entropy extraction in metastability-
based TRNG,” in 2010 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2010, pp. 135 —140.

M. Hamburg, et.al, “Analysis of Intel’s Ivy Bridge Digital Random
Number Generator.” Cryptography Research, Inc., Mar-2012.

A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, CRC Press, Inc., 1996.

98 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

