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ABSTRACT
In role-based access control (RBAC), roles are traditionally
defined as sets of permissions. Roles specified by adminis-
trators may be inaccurate, however, such that data mining
methods have been proposed to learn roles from actual per-
mission utilization. These methods minimize variation from
an information theoretic perspective, but they neglect the
expert knowledge of administrators. In this paper, we pro-
pose a strategy to enable a controlled evolution of RBAC
based on utilization. To accomplish this goal, we extend a
subset enumeration framework to search candidate roles for
an RBAC model that addresses an objective function which
balances administrator beliefs and permission utilization.
The rate of role evolution is controlled by an administrator-
specified parameter.
To assess effectiveness, we perform an empirical analy-

sis using simulations, as well as a real world dataset from
an electronic medical record system (EMR) in use at a large
academic medical center (over 8000 users, 140 roles, and 140
permissions). We compare the results with several state-of-
the-art role mining algorithms using 1) an outlier detection
method on the new roles to evaluate the homogeneity of their
behavior and 2) a set-based similarity measure between the
original and new roles. The results illustrate our method is
comparable to the state-of-the-art, but allows for a range of
RBAC models which tradeoff user behavior and administra-
tor expectations. For instance, in the EMR dataset, we find
the resulting RBAC model contains 22% outliers and a dis-
tance of 0.02 to the original RBAC model when the system
is biased toward administrator belief, and 13% outliers and
a distance of 0.26 to the original RBAC model when biased
toward permission utilization.
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1. INTRODUCTION
Role-based access control (RBAC) is a framework that

has been adopted widely for managing the rights of users
in information systems [16]. It was designed to simplify the
allocation of access rights by mapping users to a set of roles,
each of which is associated with a set of permissions. Beyond
the specification of rights, RBAC can be employed for intru-
sion detection purposes [1, 25]. For instance, the actions of
a user can be compared to those of the users associated with
the same role to determine if deviation from expected be-
havior has transpired. Thus, roles which consist of users
with relatively similar behavior are desirable for detecting
and preventing insider threats [14].

The process of defining roles, which is often referred to
as role engineering [5], is a notoriously challenging prob-
lem. In general, role engineering approaches have fallen into
two camps: i) top-down and ii) bottom-up. In the top-down
setting, organizational experts (or system administrators)
model the workflows associated with an enterprise, which
are subsequently decomposed into tasks and roles [17, 20].
Bottom-up approaches (e.g., [18, 23]), on the other hand,
discover roles by leveraging information that already exists
in the system. Many of these approaches (e.g., [18, 22,
23, 26]) propose roles based on patterns in existing user-
permission assignments.

There are benefits and drawbacks to each camp. Top-
down approaches, for instance, are based on expert reason-
ing, in-depth interviews, and tend to reflect organizational
expectations [21]. However, these approaches often result in



high costs to an enterprise [17] because they require a sub-
stantial amount of time to document the workflows which
exist. They may also be subject to the problem of infor-
mant inaccuracy [7] and, thus, access control models which
are incomplete or contain errors [12]. By contrast, bottom-
up approaches enable an RBAC system to be derived au-
tomatically, such that their cost is significantly lower than
their top-down counterparts. Yet, there is no guarantee that
users in the same role, as defined by their permissions, will
exhibit similar behavior.
Historically, role engineering strategies have treated these

camps independently, but we believe there is merit in com-
bining them into a more comprehensive role engineering
framework. Consider, while it may be that expert-specified
RBAC configurations are not entirely representative of an
enterprise, it is unlikely that such information is completely
uninformed. As such, the goal of this paper is to propose a
role engineering approach that evolves roles in a manner that
balances 1) the desire to retain an existing RBAC configu-
ration with 2) the need to assign users with similar behavior
into common roles.

Figure 1: An architectural overview of DDRE algo-
rithm

From a high-level, our evolution strategy, which we call the
Data Driven Role Evolution (DDRE) algorithm, consists of
mainly two phases as shown in Figure 1. In the first phase,
we mine a set of candidate roles, which are selected to opti-
mize an objective function that balances distance from the
original roles with behaviorial similarity in the form of per-
mission invocation in access logs. In the second phase, each
user is assigned to roles according to a criterion that mit-
igates redundancy in the access control model. There are
several primary contributions of this paper, including:

• A new objective function for the role mining
problem. We devise an objective that balances the
administrator’s belief with the evidence in existing ac-
cess logs. The function is parameterized, such that a
user can bias the resulting RBAC configurations to-
ward belief or evidence as deemed desirable.

• A hybrid role engineering algorithm. We propose
a new role engineering algorithm that builds on a sub-
set enumeration technique employed in previous role
engineering strategies. Our algorithm evolves existing
RBAC configurations into new configurations which
are are more effective at addressing administrators’ be-
liefs and permission utilization goals than current role
engineering strategies.

• A multi-objective empirical evaluation. To eval-
uate the resulting RBAC configurations, we compare
our algorithm with state-of-the-art role mining tech-
niques using a real dataset derived from a large elec-
tronic medical record system, as well as a controlled
synthetic dataset. The results show that our role evo-
lution algorithm can, unlike previous methods, pro-
duce a range of RBAC configurations in comparison
to previous methods. Moreover, we show the result-
ing configurations follow the expected bias of the al-
gorithm and indicate utilization patterns exist in the
real dataset.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the foundations upon which our method is
built, including the role mining problem, access logs, dis-
tance measures, and outlier detection methods. Section
3 then describes our role evolution algorithm. Section 4
presents the experiments performed to evaluate our approach.
Section 5 provides a survey of related work in role engineer-
ing and role mining. Finally, Section 6 concludes the paper
and suggests next steps for extending this work.

2. PRELIMINARIES
In this section, we review several topics that inform the

development of our role revision method. This section begins
with a formalization of a generalized version of the role min-
ing problem. Next, we provide a description of access logs as
they are utilized in our method. Then, we introduce a for-
malization of the objective function invoked in our variation
of the role mining problem. Finally, this section concludes
with a description of one-class support vector machines, an
effective outlier detection algorithm, which we employ as a
measure of the quality of RBAC configurations.

2.1 Generalized Role Mining Problem
We begin with a generalized perspective of the role mining

problem, which will be refined to model the problems studied
in this work.

Definition: [Generalized Role Mining Problem] Let t = ⟨U,
P , UPA⟩ denote an access control configuration, where U =
{u1, u2, . . . , um} is a set of users, P = {p1, p2, . . . , pn} is
a set of permissions, and UPA is an m × n Boolean matrix
indicating the mapping between U and P .

The goal of the Generalized Role Mining Problem is to find
an RBAC configuration c = ⟨U,P,R, URA, RPA⟩1, subject
to UPA = URA⊗RPA, such that an objective function f()
is optimized. In the configuration, R = {r1, r2, . . . , rk} is a
set of roles, URA is an m× k Boolean matrix indicating the
mapping between U and R, and RPA is a k × n Boolean
matrix indicating the mapping between R and P .2 2

The matrices in Figures 2(b) and (c) depict an example of
an RBAC configuration. It can be seen there are six users,
seven permissions, and two roles.

Given a role rl, we can readily extract the correspond-
ing users and associated permissions. In this paper, we use

P(c)
l = {px | RPAlx = 1} to denote the set of permissions as-

signed to rl, and U(c)
l = {uy | URAyl = 1} to denote the set

1In this paper, we only consider the RBAC0 model (i.e., we
do not consider role hierarchies or constraints).
2x = a⊗ b denotes the Boolean matrix product, in which an
element is defined as xij = ∨k(aik ∧ bkj).



 p1 p2 p3 p4 p5 p6 p7 

u1 116 485 151 402 249   

u2 181 797 21 58 33   

u3 199 819 77 196 91   

u4   29 81 44 402 174 

u5   108 278 161 530 215 

u6   25 62 31 334 118 

                                                  

 

 

 

 

 

 

 

 

 

 

 r1 r2 

u1 1 0 

u2 1 0 

u3 1 0 

u4 0 1 

u5 0 1 

u6 0 1 

 p1 p2 p3 p4 p5 p6 p7 

r1 1 1 1 1 1 0 0 

r2 0 0 1 1 1 1 1 

(a) UPIM (b) URA (c) RPA 

Figure 2: An example of a user-permission invo-
cation matrix (UPIM ) and an RBAC configuration
(URA and RPA).

of users under rl in the RBAC configuration c. When ap-
propriate, we adopt the standard convention of representing
a role as its corresponding set of permissions. For example,
γ = {p1, p2} represents a role possessing two permissions.
In general, all users whose permission set is the superset of
γ automatically obtain this role. There are, however, excep-
tions to this role that will be introduced in Section 3.
Various objective functions have been proposed for the

role mining problem. Certain functions are based on the size
of R [23], while others use variations of structural complexity
[26]. With regard to the latter, objective functions have been
based on the size of R and the total number of elements in
URA and/or RPA. In this paper, we define the objective
function from the perspective of i) user behavior similarity
and ii) distance to the initial RBAC configuration.

2.2 Access Log
In this work, an access log is represented as an m×n user-

permission invocation matrix UPIM . We use ωij to denote
the number of times user ui invoked permission pj . Figure
2(a) depicts the UPIM that corresponds to the RBAC con-
figuration in Figures 2(b) and (c). To mitigate bias which
may occur from working with the raw frequency counts, we
preprocess UPIM through a row-wise normalization (i.e., all
numbers are divided by their rowsum) to represent UPIM
as a set of user-specific probability distributions.
To measure the homogeneity of a role, we need to extract

the corresponding access records from UPIM . This is ac-
complished through the application of a projection matrix.

Definition: [Projection Matrix ] Given an RBAC configu-
ration c and user-permission invocation matrix UPIM , the
projection matrix Mrl for role rl is an p × q matrix, where

p = |U(c)
l | and q = |P(c)

l |. Each row (column) of Mrl rep-
resents a user (permission) associated with rl. Let βij be
defined as an element of Mrl as follows. If the ith user in

U(c)
l is uf in U , and the jth permission in P(c)

l is pg in P ,
then βij = ωfg.2

2.3 Objective Function
To balance existing beliefs in roles with actual user behav-

ior, we propose a new objective function for the role mining
problem, which is based on two goals. The first goal is to
enable each role to possess high homogeneity in the rate at
which permissions are accessed. The second goal is to ensure
the new and pre-existing RBAC are “near” one another. We
use functions h() and j() to measure the first and second
goal, respectively, and define the objective function as:

f(cnew) = α · h(cnew) + (1− α) · j(cold, cnew) (1)

where cnew is the RBAC configuration proposed by a role
mining algorithm, cold is the existing RBAC configuration,
and α is a real value between 0 and 1 to bias the system
from h() to j(). The following subsections provide details
regarding how the functions h() and j() are computed.

2.3.1 RBAC homogeneity
In this section, we formally introduce the notion of homo-

geneity, which will be applied to characterize the similarity
of the users in a role.

Definition: [Homogeneity ] Given an RBAC configuration
c = ⟨U,P,R,URA,RPA⟩ and a user-permission matrixUPIM ,
the role homogeneity of rl is:

ho(rl) = m−1
m∑
i=1

(1− cosine(xi, cl)), (2)

where m is the number of row vectors in Mrl , xi is the ith

row vector of Mrl , cl is the mean vector of all row vectors
in Mrl , and cosine(a,b) is the cosine similarity a•b

|a||b| .

The RBAC homogeneity of c is then defined as:

h(c) = |R|−1
∑
rl∈R

ho(rl) (3)

2

Role and RBAC homogeneity (Equations 2 and 3) have a
natural geometric interpretation. Consider, if a role consists
of a set of highly similar users, then the vectors representing
the behaviors of these users will form a relatively compact
cluster in Rk (where k is the dimensionality of the vectors)
and the degree of the angle between each vector and the
mean of the cluster, measured by 1−cosine(xi, cl), will tend
to be small. Conversely, if the users in a role exhibit highly
diverse behavior, then the cluster will tend to have a long
diameter and the degree of the angle will be large.

2.3.2 Distance Between RBAC Configurations
In order to measure how far a new RBAC configuration

has migrated from the initial configuration, we introduce a
set-based similarity measure. First, we define the distance
between two roles.

Definition: [Role Distance] Let γi and δj be roles in RBAC
configurations c1 and c2, respectively. The role distance be-
tween the roles is defined as:

jac(γi, δj) = 1−
|(P(c1)

i × U(c1)
i ) ∩ (P(c2)

j × U(c2)
j )|

|(P(c1)
i × U(c1)

i ) ∪ (P(c2)
j × U(c2)

j )|
(4)

where A×B is the Cartesian product of sets A and B. 2

In our setting, a role corresponds to the Cartesian product
of its associated set of permissions and set of users. This
enables the comparison of two roles to be performed in the
joint space of permissions and users. Thus, our definition
corresponds to the Jaccard distance, a widely used measure
for the comparison of two sets [9].

We leverage the distance between roles to define the dis-
tance between a role and a role set.

Definition: [Role Set Distance] The role set distance from
role γ to role set R is the minimum distance to any role in
the set:

minjac(γ,R) = min
δ∈R

jac(γ, δ) (5)



2

Finally, we can define the distance from one RBAC con-
figuration to another.

Definition: [RBAC Distance] Let ci and cj be RBAC con-
figurations. The RBAC distance from ci to cj is:

j(ci, cj) = |Ri|−1
∑
γ∈Ri

minjac(γ,Rj) (6)

where Ri and Rj are the role sets of ci and cj , respectively.
2

2.3.3 Quality of a Role
We further use the metrics above to define a heuristic

function that computes a score for a role γ. This function,
which we call the role score rs, is defined as:

rs(γ) = α · ho(γ) + (1− α) ·minjac(γ,R), (7)

where α is as defined in Equation 1 and R is the role set of
cold in Equation 1. This function will be leveraged to guide
our role evolution algorithm (described in Section 3).

2.4 One-Class SVM
To evaluate the homogeneity of the resulting roles, we

employ an outlier detection algorithm. The selection of this
strategy is based on the hypothesis that the more homoge-
neous a role is, the smaller the number of outlying users it
will contain. In this paper, we use a one-class support vector
machine (SVM) [19] to detect outlying users for each role.
SVMs have been reported as comparable, and often supe-
rior, to other anomaly detection methods in various settings
[11], including intrusion detection [6].
One-class SVMs can be applied to learn a region that con-

tains only the training set, which is expected to be typical
data for a class. Any data point in a test set that falls out
of the region will be predicted as an anomaly. Theoretically,
the goal of SVM in this scenario is to find a hyperplane
w ∈ F that separates the training set from the origin with
the maximum margin. This can be formalized as an opti-
mization problem as follows:

min
w∈F,ξ∈Rl ,ρ∈R

1

2
∥w∥2 + 1

v · l
∑
i

ξi − ρ

subject to (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

, (8)

where ξi are non-zero slack variables to be penalized in the
objective function. When values for w and ρ can be found
which solve the optimization function, the majority of the
training set satisfies sgn(w ·Φ(xi)) ≥ ρ, while the regulariza-
tion term ∥w∥ remains small. The parameter v determines
the tradeoff between these two goals. Withw and ρ, we have
a decision function f(x) = sgn(w ·Φ(x)− ρ) to determine if
an new instance x is anomalous.
In this work, we specifically use one-class SVMs with an

RBF kernel, as defined in Equation 9:

K(xi,xj) = exp(−g · ∥xi − xj∥2) (9)

The parameters g in Equation 9 and v in Equation 8 are key
factors that influence the performance of one-class SVMs.
We utilize a grid search technique to find values for g and v
that enable a robust SVM [10].
For evaluation, for each role rl, we split the row vectors

of a projection matrix into a training set and a test set. We

perform gird search on the training set to obtain g and v,
which are then applied to train and test a one-class SVM.
The proportion of outlying users identified by the one-class
SVM is applied to measure the homogeneity of the role.

3. ROLE EVOLUTION BY PERMISSION UTI-
LIZATION

This section begins by formally defining the Role Evolu-
tion By Permission Utilization (REPU) problem.

Definition: [REPU Problem] Given an existing RBAC con-
figuration c = ⟨U, P, R, URA, RPA⟩, a user-permission as-
signment UPA (UPA = URA⊗RPA) and a user-permission
invocation matrix UPIM , REPU is to find a new RBAC
configuration c∗ = ⟨U, P, R∗, URA∗, RPA∗⟩ subject to UPA
= URA∗ ⊗ RPA∗, such that the objective function f(c∗) =
α · h(c∗) + (1− α) · j(c∗, c) is minimized. 2

The role mining problem has been shown to be NP-complete
[23]. The REPU problem is a variation on role mining and
can be reduced to this problem, making it NP-complete as
well. Thus, we propose a heuristic-based search strategy
based on a two-phase process as defined below.

3.1 Algorithm Description
To address the REPU problem, we designed the Data-

Driven Role Evolution (DDRE) algorithm. Here we provide
a walkthrough of the process and refer the reader to Algo-
rithm 1 for specific details. The two phases of the algorithm
are: i) candidate role generation and ii) role assignment.

3.1.1 Candidate Role Generation
The first phase begins with a set of unit roles UR, such

that there is one permission per role and no roles have the
same permission (i.e., a one-to-one mapping of permissions
and unit roles). Next, UR is copied to a candidate role
set CR. The algorithm then iterates until a termination
condition is satisfied. Each iteration begins by instantiating
a set of new roles into an empty pool DP , which is based on
a pairwise union for all roles in CR. For example, the union
of {px} and {py} yields {px, py}.

The roles in DP are sorted by their quality scores (defined
in Section 2.3.3), such that DP serves as a priority queue,
where the best role is at the top. The algorithm then pro-
ceeds through the queue, by moving a role from the top of
DP to CR and flipping the 1’s in the user-permissions as-
signment UPAtemp that are covered by the role to 0’s. This
process continues until every element in UPAtemp is set to
0. The algorithm then reiterates.

3.1.2 Role Assignment
Once CR is stable or the max number of iterations is

reached (i.e., the termination condition), the algorithm en-
ters the second phase of role assignment, the details of which
are in Algorithm 3. The goal of this phase is to ensure that
each user is assigned to non-redundant roles. By default,
any user whose permission set is a superset of one role will
automatically obtain this role. This would result in redun-
dancy and an increasing unnecessary complexity in the sys-
tem. For example, consider a set of users assigned to roles
γ = {p1, p2, p3} and µ = {p1, p2}. The latter role µ is redun-
dant because the affiliated users can accomplish their task
using only the γ role. Thus µ could be removed for the sake
of succinctness.



Algorithm 1 Data-Driven Role Evolution

Input: c = ⟨ U, P, R, URA, RPA⟩, UPIM , α, maxTimes
Output: c∗ = ⟨U, P, R∗, URA∗, RPA∗⟩
1: t ← 0, DP ← ∅, CR ← ∅, CRold ← ∅, UR ←

∅, UPA = URA⊗RPA,UPAtemp = UPA
2: for each pi ∈ P do
3: UR← UR ∪ {{pi}}
4: end for
5: CR← UR
6: while |CRold − CR| > 0 && t++ ≤ maxTimes do
7: DP ← ∅
8: for each µi ∈ CR do
9: for each µj ∈ CR do
10: DP ← DP ∪ {µi ∪ µj}
11: end for
12: end for
13: CRold ← CR,CR← ∅
14: Sort(DP , UPIM , c, α){Sort roles in DP according to

their quality score. See Algorithm 2 for details.}
15: for each γi ∈ DP do
16: if every element in UPMtemp is 0 then
17: break
18: end if
19: if γi cannot cover any 1’s in UPAtemp then
20: continue
21: end if
22: CR← CR ∪ γi
23: change all 1’s in UPAtemp covered by γi to 0’s
24: end for
25: end while
26: {R∗, URA∗} = RoleAssignment(U,P, UPA,CR)
27: Initialize a p×n Boolean matrix RPA∗ with all elements

equal to zero, where p = |R∗| and n = |P |.
28: for each µ′

i ∈ R∗ do
29: for each pj ∈ P do
30: if pj ∈ µ′

i then
31: RPA∗

ij = 1
32: end if
33: end for
34: end for
35: return c∗ = ⟨U,P,R∗, URA∗, RPA∗⟩

Algorithm 2 Sort()

Input: DP , UPIM , α, c = ⟨U,P,R, URA,RPA⟩
1: Initialize an array of real value, score[], which has the

same size as DP
2: for each γi ∈ DP do
3: score[i] = rs(γi)
4: end for
5: Sort DP in ascending order according to score[]
6: return

The problem of winnowing the system down to a min-
imal set of roles for each user is similar to the set cover
problem: given a user who possesses a set of permissions
PMS i = {pi1 , pi2 , . . . , pik} and a set of roles ROLES i =
{γ1, γ2, . . . , γl} whose elements are all subsets of PMS i, iden-
tify the smallest number of roles in ROLES i whose union
equals PMS i. It has already been shown that this problem
is NP-complete [8]. Given the complexity of the problem, we
adopt an approximation algorithm [3] to resolve the prob-

Algorithm 3 RoleAssignment()

Input: U , P , UPA, CR
Output: URA, R
1: R← ∅, m = |U |
2: for each ui ∈ U do
3: PMSi ← {pj |∀pj ∈ P,UPAij = 1}, ROLESi ← ∅
4: while PMSi ̸= ∅ do
5: Select role µk from CR, such that µk ⊆ PMSi and

|PMSi ∩ µk| is maximized.
6: PMSi ← PMSi−µk, ROLESi ← ROLESi∪{µk}
7: end while
8: R← R ∪ROLESi

9: end for
10: Re-index the roles in R using integers 1 to h = |R|, such

that R = {µ′
1, µ

′
2, . . . , µ

′
h}

11: Construct m×h Boolean matrix URA, such that if µ′
j ∈

ROLESi, URAij = 1, otherwise URAij = 0
12: return R, URA

lem, as shown in Algorithm 3. At each iteration, we select
the role in ROLES i with the largest number of permissions
in common with PMS i. The role is added to Ri and the
permissions which were in common with PMS i are removed
from further consideration. This procedure repeats until no
elements exist in PMS i.

Finally, roles in Ri are assigned to user i. After assign-
ing roles for each user, we obtain a final role set R∗ and
a user-role assignment URA∗. Specifically, we generate a
role-permission assignment RPA∗ from the permission sets
of the roles. Thus, a new RBAC configuration c∗ = ⟨U, P,
R∗, URA∗, RPA∗⟩ is returned.

3.2 An example
In this section, we use the RBAC configuration and UPIM

in Figure 2 with α = 1 to illustrate how the DDRE algorithm
works in detail.3

UPA and RPA indicate there are two roles and six users.
The roles are represented by permission sets {p1, p2, p3, p4, p5}
and {p3, p4, p5, p6, p7}. For this example, we create a set of
ideal roles as the optimal solution, from which we design a
series of generative models to construct UPIM . This set con-
tains three roles, which correspond to {p1, p2}, {p3, p4, p5}
and {p6, p7}. The generative model for each of the roles fol-
lows a fixed distribution, which for this example is set to
{0.2, 0.8}, {0.2, 0.5, 0.3}, and {0.7, 0.3}, respectively. This
means, for instance, that for an arbitrary user uk associated
with the first role, UPIM k1:UPIM k2 is 1:4.

First, the algorithm initializes the system with a set of
unit-roles: {{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}}. Next,
the algorithm performs a pairwise combination of the unit-
roles to derive a pool DP of the form {{p1, p2}, {p1, p3},
. . . , {p6, p7}}. From this pool, four roles, {p1, p2}, {p3, p4},
{p6, p7}, and {p4, p5}, are selected for the next round of pair-
wise combination because they comprise the top four posi-
tions of the pool and are able to recover the UPA. When
this set of roles is combined, it updates the pool to be-
come {{p1, p2}, {p3, p4}, {p4, p5}, {p6, p7}, {p1, p2, p3, p4},
{p1, p2, p4, p5}, {p3, p4, p5}, {p4, p5, p6, p7}}.

3α = 1 implies the algorithm is completely biased to gen-
erate a set of roles with high homogeneity in user behavior
(i.e., it ignores the structure of the original roles).



At this point, we select another four roles, {p1, p2}, {p3, p4},
{p6, p7} and {p3, p4, p5}, from the pool because they com-
prise the top four positions in the pool and are able to
recover the UPA. Again, these roles are combined to up-
date the pool to become {{p1, p2}, {p3, p4}, {p3, p4, p5},
{p6, p7}, {p1, p2, p3, p4}, {p1, p2, p3, p4, p5}, {p3, p4, p6, p7},
{p3, p4, p5, p6, p7}}. At this point, roles in the top four posi-
tions of the pool, {p1, p2}, {p3, p4}, {p6, p7} and {p3, p4, p5},
are selected to constitute the candidate role set. Since the
candidate role set is the same as the previous round, this
phase of the DDRE algorithm terminates and returns this
candidate role set.
Next, the roles {p3, p4} are redundant in the presence of
{p3, p4, p5}, so they are discarded in the second phase.
Finally, the remaining three roles {p1, p2}, {p3, p4, p5},

and {p6, p7} constitute the role set in RBAC configuration
as a solution, which are the same as the three ideal roles
alluded to earlier.

4. EXPERIMENTS
We investigated the performance of the DDRE algorithm

on both synthetic and real world datasets. In the process,
we varied α to characterize how the resulting RBAC con-
figuration changes. Additionally, we compared DDRE with
several related role mining algorithms, including the mini-
mal perturbation role mining algorithm [24] and role mining
with latent Dirichlet allocation (LDA) [13]. We defer the de-
scription of these methods to the Related Work (Section 5).

Table 1: Statistics for the EMR access log.
Users Job Titles Reasons Accesses

Total # 8095 140 143 1,138,555

4.1 Description of Datasets

4.1.1 Electronic Medical Record Roles & Access Logs
The real world dataset was extracted from three consec-

utive months of access logs from the Cerner Corporation’s
PowerChart electronic medical record (EMR) system in use
at Northwestern Memorial Hospital, which is an 854 bed
primary teaching affiliate of Northwestern University. All
clinicians retrieve clinical context and enter inpatient notes
and orders using the system. Each entry of the log contains
information about a distinct access made to the EMR, in-
cluding user-id, patient-id, time, job title of the user, reason
for the access, type of service, and location where the access
transpired.
Table 1 depicts summary statistics for the access logs.

Although the EMR is not based on RBAC, the reason is an
option selected when a chart is accessed by the user during
a patient’s hospitalization and the options available are tied
to the job title of the user. As a result, we believe it is
reasonable to utilize the reasons as privileges and job titles
as roles in the system. Table 2 shows how we acquire an
RBAC configuration c = ⟨U,P,R,URA,RPA⟩ and a user-
permission invocation matrix UPIM from the access log.

4.1.2 Synthetic Roles & Access Logs
To allow for replication of our study and comparison to

the EMR dataset, we created a synthetic dataset which con-
sists of an RBAC configuration c′ = ⟨U ′, P ′, R′, URA′,

Table 2: A summary of how the RBAC configuration
and UPIM are derived from the EMR access logs.

Feature Derivation Process
U The set of users in the access logs.
R The set of job titles in the access logs.
P The union of reason sets available to each job title

in R.

URA |U | × |R| Boolean matrix. If the ith user and jth

job title (role) co-occur in one entry of the access
log, URAij = 1; otherwise URAij = 0.

RPA |R| × |P | Boolean matrix. If the jth reason (per-

mission) belongs to the reason set available to ith

job title (role), RPAij = 1; otherwise RPAij = 0.

UPIM |U | × |P | real value matrix. If the ith user and jth

reason (permission) co-occur in the same entry of
the access log t times, then UPIM ij = t.

RPA′⟩ and a corresponding UPIM . As in the example in
Section 3.2, there are several ideal roles, each of which has
a corresponding probability distribution over its affiliated
permissions.

To enable a clean analysis, there is no overlap in the
permission sets of these roles. We merge the permission
sets of several ideal roles to realize an actual role in the
RBAC system. For each user under one actual role, we
utilize the ideal roles hiding in the actual role to gener-
ate its corresponding vector in UPIM , where the numbers
corresponding to one ideal role need to follow the proba-
bility distribution of this ideal role. For instance, we can
merge two ideal roles {p1, p2, p3} and {p4, p5, p6} whose dis-
tributions are {0.2, 0.3, 0.5} and {0.1, 0.7, 0.2}, respectively,
to create an actual role {p1, p2, p3, p4, p5, p6}. The rates of
permissions invoked by each user ui assigned to this role
need to be consistent with the distributions of both ideal
roles, which means UPIM i1 : UPIM i2:UPIM i3 = 2:3:5 and
UPIM i4 : UPIM i5:UPIM i6 = 1:7:2. The UPIM matrix is
constructed by performing this procedure for each user. A
more detailed example is reported in the Appendix.

For this study, we created 10 ideal roles, and use 10 actual
roles, which are derived by merging different sets of the ideal
roles as R′. We synthesize 20 users per role (i.e., 200 users
in total) as U ′. For each actual role, the ideal roles used for
merging are randomly selected from the 10 ideal roles. Since
the actual roles are represented by permission sets, RPA′ is
derived accordingly. In addition, we derive P ′ by uniting the
permission sets of all actual roles. Thus, a synthetic RBAC
c′ is successfully constructed.

4.2 Evaluation Measures
We use two measures to assess the quality of the resulting

RBAC system.
RBAC Evolution Distance: This measure character-

izes the distance between the old and new RBAC configura-
tions. It directly corresponds to Equation 6.

Outlier Rate: This measure characterizes the homo-
geneity of users’ behavior in the resulting roles. For this
measure, we use the rate at which users are predicted to be
outliers in the system. The outlier rate is computed as fol-
lows. For each role rl, we perform outlier detection on the
corresponding projection matrix Mrl using one-class SVM.4

To do so, the row vectors in Mrl are split into three equally-
sized partitions {part1, part2, part3}. We pick one partition
as the test set, and the remaining two partitions as training

4All SVM calculations were performed in libsvm [2].



and validation sets for a one-class SVM. After we obtain a
one-class SVM model, we perform the outlier detection on
the test set. All vectors classified as negatives are desig-
nated as outliers. This process is performed in three-fold
cross-validation (i.e., three times with a different test set),
so that each row vector in Mrl is evaluated. The outlier rate
of a role rl is computed as:

orl =

∑3
i=1(# of outliers in parti)

# of row vectors in Mrl

(10)

Finally, the outliers from each role are consolidated to cal-
culate the outlier rate for the entire RBAC system:

oor =

∑
i ori · ni∑

i ni
(11)

where ni is the number of users who are members of role ri.
Detecting the outlier rate is a more intuitive and straight-

forward way to measure the homogeneity of the entire RBAC
system5 because the two concepts are strongly related. As
proof, Figure 3 shows the relationship for both the EMR
and synthetic datasets, where each point is derived from the
RBAC configuration from the DDRE algorithm over a range
of α values. The correlation coefficient (r2) for a linear re-
gression was found to be 0.912 and 0.837 for the EMR and
synthetic datasets, respectively. Thus, we conclude that the
outlier rate is positively correlated with RBAC homogeneity
and use it to measure the homogeneity of the system in the
following evaluation.
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Figure 3: Relationship between RBAC homogeneity
and outlier rate.

4.3 Results

4.3.1 Assessing the Tradeoff
All of the following experiments were run on an Intel Core

i5 2.40GHz CPU with 4G memory and a Windows XP oper-
ating system. We ran the DDRE algorithm with a range of

5The RBAC homogeneity in Definition 3 could be replaced
with the outlier rate. However, RBAC homogeneity has
significantly lower time complexity (O(mn), where m is the
number of roles which ever exist in DP of Algorithm 1, n is
the average number of users contained by each role) and can
be computed in a feasible amount of time on a commodity
server. By contrast, the outlier rate requires computation
on the order of (O(mn2)).

α values to assess its efficiency. Table 3 shows the time con-
sumed by the algorithm on the EMR dataset. The longest
time was 21.7 minutes, which shows the algorithm can ter-
minate in a practical amount of time. Moreover, the runtime
is directly correlated with α.

Next, we investigated how the RBAC configuration yielded
by DDRE changes with α. Figure 4 summarizes this result,
where the number near each point in the curves of DDRE
corresponds to the value of α used to generate the corre-
sponding RBAC configuration. In this figure, it can be seen
that when α biases the system towards behavior, the over-
all outlier rate is low, whereas the distance between the old
RBAC configuration and the resulting RBAC configuration
is large. On the contrary, when α is biased towards the dis-
tance to old RBAC configuration, the overall outlier rate
is high, while the distance between the two RBAC config-
urations is significantly smaller. In particular, we find that
the outlier rate corresponding to α = 1 is 41.1% and 87.7%
lower than that corresponding to α = 0 on the EMR and
synthetic datasets, respectively. The Jaccard distance be-
tween the two RBAC configurations when α = 0 is 90.9%
and 100% lower than that corresponding to α = 1 on the
EMR and synthetic datasets, respectively. This observa-
tion indicates that we can obtain an almost identical RBAC
configuration to the initial one when α = 0. These results
suggest that the DDRE algorithm is effective.

Table 3: Runtime of the DDRE algorithm.
α 1 0.97 0.93 0.9 0.8 0.7 0

Runtime(min) 21.7 15.5 12.7 12.5 10.4 7.3 6.4

We also note that the EMR dataset yields a much smaller
range of outlier rates and Jaccard distances than the syn-
thetic dataset. We hypothesized that this is because each
actual role in the synthetic dataset is composed of more ideal
roles than the actual roles in the EMR dataset. For instance,
imagine there is an actual role composed of m ideal roles.
When we compute the distance from one ideal role to the
actual role, a larger m means the ideal role has permission
set with a smaller size. This will result in a smaller numer-
ator in Equation 4 and, thus, will yield a larger value for
j(). Moreover, the ideal role exhibits a strong pattern as a
single role, but the more ideal roles that aggregate into an
actual role, the faster their patterns are diluted. This leads
to a significant increase in outlier detection. By studying
the original roles (actual roles) and the resulting roles (ideal
roles) yielded by the DDRE algorithm with α = 1, we find
that each original role in the EMR dataset possesses 1.5 roles
on average in the corresponding resulting role set. By con-
trast, each original role in the synthetic dataset possesses
5.4 roles on average in the corresponding resulting role set.
We believe this finding validates our hypothesis.

Figure 4 also depicts the results of the minimal pertur-
bation role mining (RM-MP) and role mining with LDA
(RM-LDA) algorithms.6 The number near each point of the
RM-MP curve corresponds to the value of w that controls
the balance between the number of roles generated and the
Roles Roles Distance, a set-based distance between new role
set and old role set (D in the objective function in [24]).
It can be seen that the curves for RM-MP have the same

6Following the strategy in [13], the number of topics

(i.e.,roles) specified for the LDA is
√
|U |.



tendency as that generated through DDRE. This is an in-
tuitive and expected finding. Consider, when w is biased
towards the number of generated roles, the algorithm will
prefer the roles with larger size to those that are closer to
original roles. This can lead to low homogeneity and large
distances to the original roles. In addition, we notice that
RM-MP yields curves that are close to those from DDRE,
however, DDRE has a broader range of solutions, which can
be observed by observed at the points when α approaches
the boundary cases of 0 and 1. This indicates DDRE can
yield better results when α be biased toward either sole ob-
jective. The result of RM-LDA on the EMR dataset shows it
yields an overall outlier rate that is comparable to the results
of DDRE when biased towards permission utilization, how-
ever, the RBAC it generated is significantly different than
the original RBAC. The result of RM-LDA on the synthetic
dataset is in the neighboring region of that of DDRE, but it
is easy to find a solution from the curve of DDRE that has
both a lower RBAC distance and a lower outlier rate than
RM-LDA.

[22] G. Wu, S. Osborn, and X. Jin. Database intrusion
detection using role profiling with role hierarchy. In
Proceedings of the 6th VLDB Workshop on Secure

Data Management, pages 33–48, 2009.

[23] D. Zhang and T. E. K. Ramamohanarao. Role
engineering using graph optimisation. In Proceedings
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Models and Technologies, pages 139–144, 2007.

Figure 4: Summary of the tradeoff between the dis-
tance of old and new RBAC configurations (i.e.,
RBAC distance) and the rate of outlying behavior
for the EMR and synthetic datasets.

4.3.2 Influence of SVM Training on Outliers
Next, we investigated how the results of one-class SVM

are influenced with respect to the v parameter.7 This ex-
periment is performed to determine if there exist patterns in
the EMR dataset or if our results are based on random ef-
fects. As mentioned earlier, v controls the tradeoff between
the fraction of training instances falling into the learned re-
gion and the value of the regularization term. As v increases,
less instances in the training set will fall into the learned re-
gion. So, if the entire dataset follows a pattern, the test set
will be distributed in approximately the same region as the
training set even though v is decreasing. Otherwise, due to
the high diversity of the support vectors, the test set will
likely be located in a different region.
To perform this portion of our analysis, we created two

uncontrolled versions of UPIM for the two data sets used

7The paratmeter g is determined by the grid search method
and is not investigated.

earlier by assigning a random value to UPIM ij that was
originally UPAij = 1. The uncontrolled version of UPIM
is used for simulating the access log without any pattern.
We then employed one-class SVM to compute the accu-
racy (calculated by 1 − oor) for the RBAC configurations
with the real and uncontrolled UPIM matrices for the EMR
dataset (called EMR and EMRUN) and synthetic dataset
(called SYN and SYNUN). It is expected that the accuracy
on the uncontrolled dataset will decrease more quickly than
the controlled dataset.

Table 4: Role prediction accuracy as a function of v.
v =0.16 v=0.21 v=0.26 v=0.31 v=0.36

EMRUN 79.48% 75.48% 71.08% 66.25% 61.93%
EMR 82.48% 77.35% 75.10% 71.51% 67.02%

SYNUN 78.10% 72.00% 66.59% 60.75% 54.93%
SYN 77.18% 73.82% 68.73% 64.18% 58.91%

Table 4 shows the accuracy of one-class SVM with differ-
ent v on the resulting RBAC configurations. Here it can be
seen that the accuracy of SYNUN decreases by 29.67%, while
the accuracy on SYN decreases by 23.67%. By performing
a proportion test, the latter accuracy decrease rate is slower
than the former one with 90% confidence. This observation
confirms our suspicion. We further note that the accuracy on
EMRUN decreases by 22.08%, while the accuracy on EMR
decreases by 18.74%, and the difference between them is also
proven statistically significant with 90% confidence by the
proportion test, which suggests permission invocation pat-
terns exist in the real EMR dataset.

4.3.3 Statistics of Generated Roles
Finally, Figures 5 and 6 provide summary statistics of the

roles generated when DDRE is applied to the EMR dataset.
In Figure 5, each circle (x, y) represents one role γ. x is
calculated by minjac(γ,R) (see Equation 5), where R is the
role set of the original RBAC, while y is the outlier rate (see
Equation 10) detected for this role. From Figure 5, it can
be seen there is a major difference between the distributions
of roles yielded by the algorithm with α set to 1 and 0.

Moreover, we show the marginal distributions ofminjac(γ,
R) and the outlier rate under different α in Figure 6. The
histogram in Figure 6(a) demonstrates that the roles gener-
ated by α = 1 tend to have less outlying users than the roles
generated by α = 0. By contrast, the histogram in Figure
6(b) demonstrates that the roles generated by α = 0 tend to
be closer to the role set in the original RBAC than the roles
generated by α = 1. These observations further validate the
effectiveness of the DDRE algorithm.

5. RELATED WORK
The concept of role engineering was first proposed by

Coyne [5]. As mentioned earlier, the process of role engineer-
ing can be grossly categorized into top-down and bottom-up
strategies. There have been various approaches proposed for
top-down approaches (e.g., [20, 17, 15]), but given the time-
consuming and costly nature of this approach, it has limited
adoption in real settings [17].

Thus, over the past decade, there has been a growing in-
terest in bottom-up approaches, which enables role engineer-
ing to be automated with significantly lower cost. Here, we
highlight several approaches that are conceptually similar to
our work in that they iteratively build larger permission sets



(a) Plot of α = 0 (b) Plot of α = 1

Figure 5: Plots of roles denoted by corresponding distance to old RBAC and outlier rate

(a) Distribution of Outlier Rate (b) Distribution of RBAC Distance

Figure 6: Frequency distributions of (a) outlier and (b) distance rates under α = 0 and α = 1

for roles. In [23], the goal is to minimize the number of roles
and permissions per role. It was shown that this problem
is computationally challenging and so a greedy heuristic-
driven algorithm was proposed. The algorithm consists of
two phases: in the first phase, FastMiner [22] produces a
set of candidate roles by intersecting each pair of permission
sets of users, and then, in the second phase, candidates with
the greatest ability to cover the UPA (i.e., 1’s in the ma-
trix) are selected until coverage is complete. Alternatively,
[18] proposes the ORCA algorithm, which generates roles
by performing a hierarchical clustering on permission sets.
In this process, the quality of a cluster (role) corresponds
to the number of users associated with it. [26] use graphs
to represent the relations among users, roles, and permis-
sions, and then employs graph optimization to solve the role
mining problem. The process begins with a set of possible
roles, which is composed of the permission sets of all users.
Next, pairs of roles are iteratively selected and are split or
merged, to gain the largest improvement on the optimiza-
tion measure of the resulting graph. While these strategies
propose roles, they do not attempt to maximize homogene-
ity and minimize the distance to an existing set of roles.
[4] proposes a role engineering method that leverages orga-
nizational information to generate a set of roles with clear
business meaning. The method first partitions the data set

(user-permission assignment) according to certain appropri-
ate business information (e.g. organization unit). Next, they
adopt a divide-and-conquer approach that is to perform role
mining on each subset. This approach may produce a RBAC
configuration that is close to that built by administrators or
experts due to the use of business information that is often
used in top-down role engineering. However, like other role
mining algorithms, it does not leverage information in ac-
cess logs, such that roles with high homogeneity could not
be searched.

There have been several approaches proposed which at-
tempt to revise roles and leverage permission utilization pat-
terns (which we empirically compared to in the previous
section). [24] defines the minimal perturbation role mining
problem, whose objective is to find a set of roles that has
both small distance to the original roles and a small num-
ber of roles in total. The objective function is defined as
f(R) = w ·k+(1−w) ·k ·D, where k is the number of roles,
D is the distance between old and new role sets, and w is a
parameter used to control the balance between k and D. In
this method, a role is constantly selected from the candidate
role sets produced by FastMiner [22] according to its value
on a heuristic function f(r) = w · a + (1 − w) · a · d, where
a is the remaining 1’s in UPA covered by this role and d is
the distance between this role and the original role set. The



selection process terminates when UPA is covered by the
selected roles. However, this work is limited in that it nei-
ther takes the users’ behavior into consideration, nor does it
measure the similarity of RBAC configurations. Rather, it
only uses the similarity between two role sets. By contrast,
[13] takes user behavior into consideration and proposes a
simulated annealing approach to mine URA and RPA with
the usage of privileges. This approach begins with a random
initialization of URA and RPA, which is derived from the
probability distribution of users over roles, and the prob-
ability distribution of roles over permissions calculated by
the LDA model learned from the access log. It then it-
eratively decides if a new pair of URA and RPA matrices
would be accepted to replace the old ones by a λ-distance
(a measure of how well they explain the usage of permis-
sions). For simplicity, the resulting URA and RPA does
not necessarily have to be consistent with the original UPA.
Thus, this work is significantly different than ours in that
the resulting RBAC configuration is not necessarily subject
to UPA = URA⊗ RPA.

6. DISCUSSION AND CONCLUSIONS
This paper proposed a novel role engineering algorithm

that enables a controlled evolution of an RBAC configura-
tion based on the utilization of permissions (as documented
in access logs). We devised an objective function that bal-
ances an administrator’s beliefs and actual permission uti-
lization, and defined a role mining problem for finding an
RBAC configuration that optimizes this objective. To solve
this problem, we proposed a two-phase algorithm. In the
first phase, a heuristic function related to the objective is
applied to propose a set of candidate roles. In the second
phase, each user is assigned roles in the candidate role set to
minimize redundancy in role definitions. We then performed
an empirical analysis with real and simulated datasets to
show that our algorithm can generate appropriate RBAC
configurations for various biases of the two competing goals
of the objective function.
There are several limitations to our strategy, however,

which we highlight to provide a roadmap for future work.
First, our strategy is based on permission utilization pat-
terns in an atemporal fashion. This is a simplification of
the access logs and neglects that the order in which permis-
sions are invoked may be correlated. Second, our approach
is predicated on the hypothesis that there is only one pattern
(in the form of a distribution of permission rates) associated
with the underlying roles. Yet, it is possible there could be
multiple patterns. We plan to extend our strategy to de-
termine when such a situation arises and tease apart these
patterns into distinct roles.
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APPENDIX
A. SYNTHETIC DATA SET GENERATION

We use the ideal roles in example of Figure 2 in this
section. These roles are r1 = {p1, p2}, r2 = {p3, p4, p5}
and r3 = {p6, p7} and their probability distributions are
{0.2, 0.8}, {0.2, 0.5, 0.3}, and {0.7, 0.3}, respectively. When
synthesizing the actual role γi, we first select a random set
of ideal roles (i.e., each role has a 0.5 probability of being
selected). Next, we merge all roles in the set to form γi. For
instance, r1 and r2 are selected, then γi = {p1, p2, p6, p7}.

Then, we simulate users for the γi. Let us use uj as an ex-
ample. The row vector corresponding to uj in UPIM needs
to be consistent with the probability distributions associated
with r1 and r3. When we try to assign values to UPIMj1

and UPIMj2 (which correspond to r1), we need to ensure
that UPIMj1 : UPIMj2 = 1 : 4. To finish the assignment,
we first generate a random integer (e.g., 100), and repeat
the following procedure 100 times: we add one to UPIMj1

with probability 0.2 and if we fail to add to UPIMj1, we add
one to UPIMj2. Similarly, we assign values to UPIMj6 and
UPIMj7. For UPIMjk where k = 3, 4, 5, the value is set to
0 because the role associated with uj does not contain pk.


