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In electronic medical record (EMR) systems, administrators often provide EMR users with broad access
privileges, which may leave the system vulnerable to misuse and abuse. Given that patient care is based
on a coordinated workflow, we hypothesize that care pathways can be represented as the progression of a
patient through a system and introduce a strategy to model the patient’s flow as a sequence of accesses de-
fined over a graph. Elements in the sequence correspond to features associated with the access transaction
(e.g., reason for access). Based on this motivation, we model patterns of patient record usage, which may
indicate deviations from care workflows. We evaluate our approach using several months of data from a
large academic medical center. Empirical results show that this framework finds a small portion of accesses
constitute outliers from such flows. We also observe that the violation patterns deviate for different types of
medical services. Analysis of our results suggests greater deviation from normal access patterns by nonclin-
ical users. We simulate anomalies in the context of real accesses to illustrate the efficiency of the proposed
method for different medical services. As an illustration of the capabilities of our method, it was observed
that the area under the receiver operating characteristic (ROC) curve for the Pediatrics service was found
to be 0.9166. The results suggest that our approach is competitive with, and often better than, the exist-
ing state-of-the-art in its outlier detection performance. At the same time, our method is more efficient, by
orders of magnitude, than previous approaches, allowing for detection of thousands of accesses in seconds.
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1. INTRODUCTION

Electronic medical record (EMR) systems provide a convenient way for physicians and
clinical service providers to interact with, reason over, and contribute to patients’
health data [Buntin et al. 2010; Ludwick and Doucette 2009]. EMRs are designed
to enable effective [Pizziferri et al. 2005] and safe [Chaudhry et al. 2006] healthcare
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practices. However, healthcare organizations (HCOs) are inherently complex and dy-
namic environments [Bosch et al. 2009; Kannampallil et al. 2011], which makes it
difficult for administrators to define access control policies [Malin et al. 2011]. EMR
user privileges are therefore often defined at a coarse level to minimize workflow in-
efficiencies and maximize flexibility in the management of a patient. The consequence
of such decisions is that EMR systems are left vulnerable to misuse and, potentially,
abuse, from insiders (authenticated employees of the institution), which ultimately can
compromise patient confidentiality.

Thus, it is critical to complement access control mechanisms in EMRs with intelli-
gent auditing strategies. Manual review of the access logs of patient records, particu-
larly for public figures, can identify misuse [Gallagher et al. 1998; Zhou and Liu 2005],
but such a practice does not scale for surveillance of all medical records in a large HCO.
This is because the number of medical records accessed on a daily basis is significantly
greater than the time administrative staff have available to perform follow-up inves-
tigations. Thus, there has been an increasing focus on the development of data-driven
methodologies to support the automated discovery of potentially suspicious accesses
with respect to EMR system usage. As we review in the following section in greater
detail, auditing strategies have considered ways to winnow the set of access logs us-
ing various methods, ranging from heuristic rules (e.g., high volume users [Asaro and
Ries 2001]) to sophisticated machine learning classifiers (e.g., support vector machines
[Boxwala et al. 2011; Menon et al. 2013]). Nonetheless, the approaches developed to
date have mainly focused on a static view of healthcare operations—these approaches
tend to neglect the temporal component of patient care.

As a result, the current array of approaches fails to account for the fact that the
degree to which a particular access appears suspicious may be inferred from what
happened before, as well as after, the event in question. While care pathways are
expected [Campbell et al. 1998], they may be difficult to detect or represent for a
particular patient, particularly when auditing post hoc. This is because the flexibil-
ity and complexity of HCOs may obscure even strong patterns of care. Thus, rather
than detect and represent patterns explicitly (which has been done for temporal policy
modeling [Peleg et al. 2008]), we believe it may be more scalable to model accesses
to a patient’s record over time (the sequence of users and affiliated contextual infor-
mation) to determine when a particular access has significantly deviated from typical
practice.

In this article, we establish a patient-flow-based anomaly detection (PFAD) frame-
work using historical access logs from EMRs. In doing so, we aim to establish a scoring
model that assesses the degree to which an access can be characterized to have de-
viated from past patterns within a series of events associated with a patient record.
PFAD uses a graph-based model of accesses that captures the ordered relationship be-
tween various components of an EMR user’s interaction with a patient record, such
as the role of the user, their stated reason for accessing the record, or where the
patient was located in the healthcare facility. To demonstrate the feasibility of our
approach, we investigated the properties of such graphs and deviation scores using
several months of access logs from Northwestern Memorial Hospital. Our empirical
results suggest that the proposed framework can identify a small proportion of ac-
cesses with high deviation scores. Our results also suggest that a small number of
access reasons contribute the majority of the deviation scores and that the deviation
from access patterns varies with the type of service. We provide results from two differ-
ent randomized experimental setups and compare PFAD with a competing approach
that is considered to be state-of-the-art, to show that our method can detect deviations
efficiently.

ACM Transactions on Management Information Systems, Vol. 4, No. 4, Article 17, Publication date: December 2013.
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2. BACKGROUND

As health information technology (HIT) and the healthcare workforce grow in diver-
sity, so too does their complexity. This is a concern because evidence suggests that com-
plex HIT can interrupt care delivery [Ash et al. 2004; Goldschmidt 2005], contribute
to medical errors [Campbell et al. 2006], and expose patient data to breaches [King
et al. 2012]. Moreover, such events tend to be discovered after they have transpired
en masse, leading to undesirable media coverage, loss of patients’ trust, and sanctions
imposed by state and federal agencies. It is therefore critical that information systems
in the healthcare setting are implemented and deployed in a manner that upholds the
privacy of the patients to whom the information corresponds.

A substantial amount of attention has been allotted to avert hacking from adver-
saries external to the HCO (e.g., Appari and Johnson [2011], Bansal et al. [2010],
Davis and Having [2006], Kwon and Johnson [2013], and Smith and Eloff [1999]). Yet,
the insider threat has received less attention from the research community, despite
its acknowledgment as a real and growing problem [Manos 2012]. This is a significant
concern because evidence suggests the greatest risk to information systems stems from
authorized users [Probst et al. 2007; Schultz 2002; Stolfo et al. 2008]. Unchecked ac-
cess to health information could lead to privacy compromise, deterioration of trust,
and eventually harm [Amatayakul 2009; Dimick 2010]. Physicians have also voiced
major concerns over the security and confidentiality of current EMR systems [Loomis
et al. 2002]. It has been suggested that the safety of EMR systems could be improved
by incorporating more stringent security procedures, such as access limitations and
detailed audit trails [Goldberg 2000]. In this section, we review the extent to which
such procedures have been applied, with a particular focus on insider threat modeling,
auditing, and anomaly detection.

2.1. Access Control and Intrusion Detection

It has been suggested that insider threats to EMRs can be addressed via traditional
information security practices [Blobel 2004; Sandhu and Samarati 1994; Schoenberg
and Safran 2000], such as variations on access control (e.g., role-based [Lee and Chang
2012; Park et al. 2001; Sandhu et al. 1996; Zhang et al. 2003], situation-based [Motta
and Furuie 2003; Peleg et al. 2008], and team-based [Georgiadis et al. 2002; Motta
and Furuie 2003; Le et al. 2012]). While many commercial EMR systems incorporate
such technologies, users are often permitted to “break the glass” to ensure patient care
is not disrupted [Ferreira et al. 2006; Marinovic et al. 2011]. The expectation is that
broken glass events will be reviewed by administrators, which is possible when the
number of escalations is small. One study in Norway, for instance, provides a com-
pelling illustration of how this framework can fail [Rostad and Nytro 2006]. In one
month, 50% of approximately 100,000 patients’ records were accessed via break-the-
glass by 45% of approximately 12,000 users, leading to over 290,000 incidents, which
corresponded to around 17% of all accesses. This is clearly a caseload greater than any
EMR administrator or healthcare privacy official can handle. Thus, rather than clamp
down on access, HCOs often provide broad rights to their employees with the threat
of penalties to anyone found to misuse the system. We wish to stress that this does
not imply HCOs forgo access controls entirely (e.g., nonclinical staff are not allocated
rights to issue medication orders), but rather that read capabilities are often granted
liberally.

To mitigate the deficiencies of access control in practice, an emerging paradigm
is to extend traditional access control through experience-based access management
(EBAM) [Gunter et al. 2011]. The premise of EBAM is to evolve access control systems
to reflect the behavior observed in the system. One way to realize EBAM is to mine pat-
terns of appropriate accesses, update the system based on such patterns, and refer an

ACM Transactions on Management Information Systems, Vol. 4, No. 4, Article 17, Publication date: December 2013.



�

�

�

�

�

�

�

�

17:4 H. Zhang et al.

access to system administrators when patterns are violated. The discovered patterns
will be updated based on feedback. Along these lines, Bhatti and Grandison [2007]
proposed a method to extend and refine privacy policies in the form of logical rules
based on patterns mined from access logs. However, this method was not evaluated
with actual EMR access log data. More recently, Zhang et al. [2011] have shown that
EMR role specifications could be refined using a classification strategy. This approach
leverages the attributes associated with accesses (e.g., patient’s location in a hospital)
to build classifiers for each role. When specific users fail to be classified into their re-
spective roles, the system can relabel the users with a more generalized section of an
organizational hierarchy (e.g., Occupational Therapists and Physical Therapists, may
be relabeled as Rehabilitation Therapists) to enable a more accurate classifier. While
these approaches were designed to enable refinement of polices, they are not necessar-
ily appropriate for the detection of outliers. For instance, the empirical findings from
Zhang et al. [2011] illustrated that prediction of a user’s role was 50–70% accurate on
average.

2.2. Auditing and Anomaly Detection in EMRs

Given the limits of access control, it is important to develop meaningful and scalable
intrusion detection strategies. An effective intrusion detection system should not only
improve detection, but also lead to increased deterrence for inside users [Cavusoglu
et al. 2005]. Various techniques for intrusion detection have been developed and have
been assessed in a wide range of application domains (e.g., Chen et al. [2005], Chou
et al. [2007], Holton [2009], and Ye et al. [2001]). With respect to the access logs of
EMR systems, intrusion detection has been split into rule-based and machine learning-
based strategies. Simple rules-based approaches were first introduced in the 1990s,
when hospital IT administrators began to inspect the distribution of medical records
accessed by users [Asaro and Ries 2001]. It was posited that high-volume users (e.g.,
employees accessing more than 200 records in a day) may be stepping beyond the
boundaries of their role. Recently rules-based approaches have become more intelli-
gent and attempt to explain accesses to medical records [Fabbri and LeFevre 2011,
2013]. Under this model, legitimate accesses to EMRs are associated with a clinical or
operational reason specified either explicitly (e.g., “follow-up visit”) or implicitly (e.g.,
an upload of a progress report). This approach can triage a large number of accesses,
but there remain a significant proportion unaffiliated with any documentation. More-
over, even when there is documentation, it is not necessarily apparent how an access
relates to a broader care process.

To overcome the rigid nature of rule-based systems, machine learning strategies
have been developed to search for patterns and detect deviations from such patterns.
Machine learning approaches themselves have two subclasses: supervised and unsu-
pervised strategies. The set of strategies, based on supervised approaches, is tuned
to detect suspicious accesses based on the knowledge of real intrusions supplied by
healthcare officials [Boxwala et al. 2011; Kim et al. 2011; Menon et al. 2013]. Empirical
analysis with incidents at several large healthcare providers in Boston demonstrated
that such methods can achieve high discriminatory power using traditional classifica-
tion models (e.g., logistic regression and support vector machines). We view this class
of access analysis as complementary to our own. They model suspicious events as a
class in a standard machine learning framework, whereas anomalies are simply events
that are outside the normal range of behavior. Additionally, these approaches are chal-
lenging to deploy in practice because they (1) require significant adjudication from
healthcare experts and (2) assume that all types of suspicious activities are known a
priori. As an alternative, a second set of automated learning strategies uses unsuper-
vised methods. These approaches use the patterns observed in the system as a model
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by which deviations can be assessed. Such approaches have been used to model devi-
ations from workflows in intrasession actions Li et al. [2012] (the pattern of a single
user interacting with the EMR) and inferred social networks of collaborations across
sessions [Chen and Malin 2011; Chen et al. 2012a, 2012b] (pattern of multiple users
coordinating to treat a patient). Of most revelevence to our own work, the specialized
network anomaly detection model (SNAD) uses a relational analysis of care providers
[Chen and Malin 2011] and has been shown to achieve high fidelity in certain EMRs,
but it is limited in that it neglects ordered pathways.

2.3. Temporal Anomaly Detection

Beyond EMR systems, we will point out there are several anomaly detection tech-
niques that invoke temporal data mining. Jakkula and Cook [2008] and Jakkula et al.
[2008] applied temporal logic to calculate the probability that an event is an anomaly
in a smart home environment. Sun et al. [2006] treated the data for one particular
timepoint as a tensor, analyzed the principal components of a sequence of tensors,
and compared the errors between the observed and predicted tensors to measure the
abnormality. Lane and Brodley [1999] divided a sequence into equal length subse-
quences. They compared the similarity and then measured the irregularity of these
subsequences. Our model, based upon a similar idea, aims to discover the temporal
patterns and measure the inconsistency between the learned patterns and new data.
However, our work is different in that it focuses on the one-step transition in each
sequence.

3. METHODS

In this section, we introduce an approach to building a graph-based model that repre-
sents the series of EMR accesses resulting from intended activities related to patient
care. We refer to this approach as patient flow-based anomaly detection (PFAD).

3.1. A Graph-based Approach for Care Pathway Modeling

To formalize the problem, let R := {r1, r2, . . . , rKr} be the set of values of a given at-
tribute R and P := {p1, p2, . . . , pKp} be the set of patients. Attributes can correspond
to any property that can be used to test the regularity of an access, including an HCO
employee’s role, the service a patient is on, the location in the HCO of the patient, or
the reason specified for an access. We use (p, r) to define an access to patient p with
value r.

For each patient p ∈ P, the access logs are represented as an ordered sequence
(according to the timestamps) of attribute R values as rip1

, rip2
, . . . , ripNp

. Let G = (V, E) be

a weighted graph such that V = {v1, . . . , vKr} corresponds to vertices for each element
in R and eij ∈ E corresponds to an edge between two elements in R. Since the same
r may be invoked in adjacent access transactions, we allow self-loops in the graph
(i = j). Both vertices and edges in the graph will be weighted. Based on this setup, the
sequence information for each patient is incorporated into the graph according to the
procedure in Algorithm 1.

The basic premise of this algorithm is to count the accesses for each r ∈ R and the
transitions between accesses for each patient. Figure 1 provides a simple example
to illustrate the patient-flow construction algorithm. Imagine there are two patient
access sequences defined over the attribute R: {{r1 → r2 → r4}, {r1 → r2 → r3 → r4}}
and R = {r1, r2, r3, r4}. First, we initialize the graph to consist of four vertices for the
corresponding values in R. Next, we follow the procedure in Algorithm 1.

This process begins by instantiating a graph with four nodes (node 1 through node
4) with node and edge weights equal to zero. For the first sequence r1→ r2→ r4, r1→

ACM Transactions on Management Information Systems, Vol. 4, No. 4, Article 17, Publication date: December 2013.
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Fig. 1. An example of patient-flow graph construction for two patients and four reasons.

Algorithm 1 Patient flow graph construction
Input: Vectors: An ordered set of attribute R values [rip1

, rip2
, . . . , ripNp

] for each patient p ∈P .

Output: A complete graph G = V , E.
Steps:
1: Let V = {v1, . . . , vKr} be the set of attribute R values
2: Let G = {V , E} be a complete graph
3: Let U = {u1, . . . , uKr} be a set of weights for each element of V , initially ui = 0 for each i
4: Let W = {w11, . . . , wKrKr } be a set of weights for each pair of elements in V , initially wij = 0

for each i, j
5: for each p ∈P do � accesses of patient p
6: for each j ∈ {1, . . . , Np − 1} do � each access of the patient p
7: uipj

← uipj
+ 1 � increment the weight for rip1

8: wipj ipj+1
← wipj ipj+1

+ 1 � increment the weight for transition ripj
→ ripj+1

9: end for
10: end for
11: uipj

← uipj
+ 1 � account for the last vertex of the sequence

12: return G

r2 ⇒ u1 = 1, w12 = 1, r2 → r4 ⇒ u2 = 1, w24 = 1, and the last access r4 ⇒ u4 = 1.
For the second sequence r1 → r2 ⇒ u1 = 2, w12 = 2, r2 → r3 ⇒ u2 = 2, w23 = 1,
r3 → r4 ⇒ u3 = 1, w34 = 1, and the last access r4 ⇒ u4 = 2. Note that we do not draw
edges with 0 weights. The weight of node i can be used to measure the likelihood of
the appearance of an access with attribute ri and the weight of edge eij can be used to
measure the likelihood of the appearance of a transition ri→ rj. We use integer values
instead of estimations of probabilities because there is insufficient data to characterize
the transition probabilities to a certain precision.

3.2. Deviation Scores

The method in Section 3.1 provides a basic data structure to summarize the flow of
patients with respect to EMR access information. In this section we introduce several
approaches and measures to generate scores that summarize the degree to which the
accesses associated with a specific patient appear to deviate. Here, we use L to denote
all records in an access log.

ACM Transactions on Management Information Systems, Vol. 4, No. 4, Article 17, Publication date: December 2013.
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Definition 3.1 (Local Vertex Score). Given an access log L : (p, r) with attribute r =
ri ∈ R, and a threshold values ū ∈ R+, the Local Vertex Score (LVS) score of L is
defined as:

LVS(ri, ū) = 1{ui<ū}(ū− ui),

where A is an event and 1A is the indicator function defined as:

1A =
{

1 if A is true,
0 otherwise.

(1)

Note that the indicator function implies that the LVS score is the difference ū − ui if
this is positive and zero otherwise.

Definition 3.2 (Local Path Score). Given an access log L : (p, r) with attribute r =
ri ∈ R, and two threshold values ū, w̄ ∈ R+, if it is known that L is in a sequence of
access logs L1, L2, . . . , LN of a particular patient with attribute ri1 , ri2 , . . . , riN , which is
ordered in the timestamps, then the Local Path Score (LPS) of L is defined as:

(1) If L = L1, LPS(ri, ū, w̄) = LVS(ri, ū)+ 1
21{wi1i2<w̄}(w̄−wi1i2);

(2) If L = Lt and t ∈ {2, . . . , N − 1}, LPS(ri, ū, w̄) = LVS(ri, ū) + 1
2 (1{wit−1it<w̄} × (w̄ −

wit−1it)+ 1{witit+1<w̄} × (w̄−witit+1));

(3) If L = LN , LPS(ri, ū, w̄) = LVS(ri, ū)+ 1
21wiN−1iN <w̄ × (w̄−wiN−1iN ).

Definition 3.3 (Global Path Score). Given a sequence of access logs PL : L1, . . . , LN
with attribute PR : ri1 , ri2, , riN of a patient and two threshold values ū, w̄ ∈ R+, the
Global Path Score (GPS) of PL is defined as:

GPS(PR, ū, w̄) =
N∑

t=1

LPS(rit , ū, w̄).

Definition 3.4 (Average Global Path Score). The Average Global Path Score (AGPS)
of PL is defined as:

AGPS(PR, ū, w̄) = 1
N

GPS(PR, ū, w̄).

Let us take a moment to provide some insight into these definitions. First, the func-
tion 1{ui<ū}(ū− ui) measures the difference between ui and the desired likelihood ū. A
similar interpretation applies to the function 1{wij<w̄}(w̄−wij). Additionally, the 1

2 used
to define the LVS score reflects the fact that both vertices of a link contribute to the
deviation measure. Thus, the LPS score corresponds to the sum of all the deviations;
the difference between the likelihood ui, wij and the thresholds ū, w̄. As a result, the
local scores (LVS and LPS) measure the strength of irregularity of a particular access.
By contrast, the global scores (GPS and AGPS) measure the irregularity of a given ac-
cess path. In combination, these measures summarize the relative irregularity of the
accesses for a patient. For example, consider the example graph depicted in Figure 1.
Now, imagine a new sequence PR : r1→ r3→ r4 with thresholds ū = 2 and v̄ = 1.
Then the LVS scores for these three accesses can be calculated as: LVS(r1, ū) = 0,
LVS(r3, ū) = 2− 1 = 1, LVS(r4, ū) = 0. The LPS scores are: LPS(r1, ū, v̄) = 0+ 1

2 × 1 =
0.5, LPS(r3, ū, v̄) = 1 + 1

2 × 1 = 1.5, LPS(r4, ū, v̄) = 0. The GPS score for PR is:
GPS(PR, ū, v̄) = 0.5+ 1.5+ 0 = 2 and the AGPS for PR is: AGPS(PR, ū, v̄) = 2

3 .
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3.3. A Heuristic for Threshold Values based on Graph Stability

The scoring functions in Section 3.2 require the specification of two threshold values:
ū and w̄, which characterize the likelihood of the occurrence of each node and edge,
respectively. When an observed value for a node or edge in a flow is smaller than the
threshold, it contributes to the deviation score.

The thresholds can be set by system administrators based on experience, but could
also be automatically inferred from historical data. Here, we introduce a data-driven
heuristic to determine these two values. This heuristic is based on the assumption
that patient record access patterns do not significantly change over time. For example,
the pattern in the previous month of data should be similar to the pattern in the next
month’s dataset. This does not imply that the system is static, but that the statistical
model that summarizes flows in the system is relatively constant.

Let us assume that the size of the historical dataset is of size nm, which we partition
into n subsets, referred to as Subset 1 through Subset n. Since our basic training
unit is an access sequence for one patient, each dataset contains an equal number
of access sequences. Next, let Gk = (Vk, Ek) with weights uk

i and wk
ij be the graph

model constructed by applying Algorithm 1 on Subset k. Given thresholds ū and w̄, let
the sets of nodes and edges with weights exceeding the threshold values ū and w̄ be:

V̄k(ū) := {vi ∈ Vk|ui ≥ ū}, Ēk(w̄) := {eij ∈ Vk|wij ≥ w̄}. (2)

Based on these sets, we invoke V̄k(ū) and Ēk(w̄) to compare the nodes and edges with
weights that do not contribute to the deviation scores (because we anticipate these will
be stable patterns). For k = 1, . . . , n − 1, the stability of the nodes for the comparison
subset k versus subset k+ 1 is measured by a node similarity ratio, defined as:

NSim(k, k+ 1) = min

{
|V̄k(ū) ∩ V̄k+1(ū)|

|V̄k(ū)| ,
|V̄k(ū) ∩ V̄k+1(ū)|
|V̄k+1(ū)|

}
, (3)

NSim = 1
n− 1

n−1∑
k=1

NSim(k, k+ 1), (4)

where |A| is the number of elements in a set A. Similarly, the stability of the edges
for the comparison Subset k vs. Subset k + 1 is measured by an edge similarity ratio,
defined as:

ESim(k, k+ 1) = min{ |Ē
k(w̄) ∩ Ēk+1(w̄)|
|Ēk(w̄)| ,

|Ēk(w̄) ∩ Ēk+1(w̄)|
|Ēk+1(w̄)| }, (5)

ESim = 1
n− 1

n−1∑
k=1

ESim(k, k+ 1). (6)

Note that V̄k(1) and Ēk(1) contain all of the nodes and edges appearing in the training
dataset, respectively.

We define the node coverage ratio NCR and edge coverage ratio ECR for Subset
k as:

NCRk(ū) = |V̄
k(ū)|
|V̄k(1)| , ECRk(w̄) = |Ē

k(w̄)|
|Ēk(1)| (7)

to measure the fraction of nodes and edges used to calculate the deviation scores. The
choice of the threshold values ū and w̄ are determined by a balance of the coverage

ACM Transactions on Management Information Systems, Vol. 4, No. 4, Article 17, Publication date: December 2013.
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Table I. A Summary of the Attributes of the Northwestern EMR Access Logs

Attribute Description
User ID Login credentials (de-identified)
Patient ID Medical record number (de-identified for cohort)
User Position Assigned role within the system
Date and Time Stamp Randomly shifted date for de-identification purposes
Chart Access Reason Option selected when a chart is first accessed by each user during a hospital-

ization. Options available are tied to the User Position
Orders Entered Indicates the number of orders entered by the user during the current chart

access (not used in this study)
Location Location of the patient within the hospital
Service Hospital service caring for the patient as specified by the doctors caring for

the patient

Table II. Summary Statistics of the NMH Dataset Utilized in this Study

User ID Patient ID
User Chart Access

Locations Services AccessesPosition Reason
Total 8099 16561 131 143 48 37 1,145,852

Table III. Summary Statistics of the Patient Access Paths

# of Paths Minimum Length Maximum Length Average Length
# of Paths

with Loops
16,561 1 849 68.58 16,539

ratio and the similarity ratio. A high coverage ratio may imply overfitting, whereas
a low similarity ratio may result in a model with too much noise. We use α and β to
represent the desired levels of coverage and similarity ratio, respectively. Given these
levels, we select the minimum values of ū and w̄, such that NCRk(ū), ECRk(w̄) ≤ α and
NSim, ESim ≥ β.

4. AN EMPIRICAL STUDY

4.1. Dataset

The dataset for this study was obtained from Northwestern Memorial Hospital (NMH),
which is the primary teaching hospital for the Feinberg School of Medicine at North-
western University. All clinicians, including physicians and nurses, retrieve clinical
content and enter inpatient notes and orders online using the Cerner Corporation’s
PowerChart EMR system. For this analysis, we were provided with the access logs for
a three-month period in the year 2010. The attributes of the access logs and the ba-
sic summary statistics for the accesses are reported in Tables I and II, respectively.
There were a total of 1,145,852 accesses for 16,561 patients in the dataset, which is
an average of 69 accesses per patient. For the purposes of this study, the access logs
were grouped according to the patient’s ID and sorted by the timestamp. Therefore,
the accesses of each patient can be considered as a path. We provide some statistics
of the access paths in Table III. While there were no specific accesses identified as
cases of misuse or abuse a priori, we use this dataset to model routine behaviors, upon
which we can inject and detect anomalous instances. As such, the results reported here
are an approximation of the performance of the system (certain events may be false
negatives).

We utilize this data to conduct our analysis as follows. Based on discussions with
hospital administrators, it was anticipated that sequence patterns in the access logs
would be contingent on the medical service type of the patient. To account for this
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Fig. 2. Number of accesses per service type.

Table IV. The Summary of Hospital Medicine Service with Thresholds ū = 1 and w̄ = 1

Subset 1 Subset 2 Subset 3 Subset 4
# of edges 4516 4293 4358 4303
Edge density 22.08% 20.99% 21.31% 21.04%
# of nodes 123 119 120 121
Node density 86.01% 83.21% 83.91% 84.61%

Subset k vs k+ 1 1 vs 2 2 vs 3 3 vs 4 NSim
# of edges only in subset k 1205 1031 1094 74.3%

# of edges only in subset k+ 1 982 1096 1042 ESim
# of common edges 3311 3262 3261 95.1%
# of nodes only in subset k 9 4 4
# of nodes only in subset k+ 1 5 5 5
# of common nodes 114 115 116

expectation, we partitioned the data according to the Service attribute. As noted in
Table II, this split yields 37 subgroups. Figure 2 summarizes the number of access
transactions for categories with at least 20,000 accesses. For this study, we focused
on the four largest categories: General Medicine, Hospital Medicine, Obstetrics, and
Pediatrics. For each subgroup, a graph model (as described in the following) was con-
structed with the Chart Access Reason attribute, where the weights were trained using
25% of the data. There are a total of 143 different values for the attribute Chart Access
Reason. This attribute was chosen in the analysis because there are no missing values
for this attribute. The remaining 75% of the data was used to identify outliers with
respect to the constructed graph model and the access evaluation scores. This exper-
imental setup was adopted because the graph is expected to evolve temporally, and a
multifold cross validation technique was deemed to be appropriate for such a setting.

4.2. Choice of the Threshold Values ū and w̄
We implemented the heuristic in Section 3.3 on the dataset described in Section 4.1
to specify ū and w̄ as follows. We divided the dataset into four equally-sized temporal
subsets (referred to as Subset 1 through Subset 4) and constructed the PFAD model
as described in Section 3. We then compared graph stability properties in adjacent
subsets. For example, we compared the graphs from Subsets 1 and 2, then Subsets 2
and 3, and finally Subsets 3 and 4. Table IV summarizes the graph stability properties
of the Hospital Medicine service with thresholds ū = w̄ = 1.
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Fig. 3. The stability and coverage ratios for the graph model for the Hospital Medicine service: (left: nodes,
right: edges).

In Table IV, the entries for edges and nodes correspond to the number of such objects
with weights ui and wij no less than the threshold values. We calculated the coverage
ratios NCRk(ū) and ECRk(w̄) for each subset for different values of ū and w̄.

We computed the quantities listed in the first column of Table IV for each value of
ū = 1, 2, . . . , 11 and w̄ = 1, 2, . . . , 11. The relationship between stability and coverage
ratios is shown in Figure 3. We also calculated the stability and coverage of the other
3 services (Hospital Medicine, Obstetrics, and Pediatrics). The results for these ser-
vices were similar and are not reported in this manuscript due to space constraints.
To choose appropriate values for the thresholds, we consider two criteria to mitigate
overfitting: (1) the coverage ratio should be no greater than 85% and (2) the stability
parameter should be no less than 80%. The selection of these two numbers is a trade-
off between stability and coverage. The first criterion is designed to prevent fitting our
model to noise in the dataset, whereas the second is designed to prevent overfitting
to overly specific flow patterns. We choose the smallest values of ū and w̄ for which
the coverage ratio is no greater than 85% and the stability parameter is no less than
80%. Based on these criteria, the threshold values for the case study discussed in the
following section were set to ū = 6 and w̄ = 3.

4.3. Properties of the Deviation Scores

For each of the four services types, we constructed the PFAD graph based on 25% of
the dataset and calculated the deviation scores for the remaining 75%. Figures 4(a)
through 4(d) provide a summary of the score distributions in these four services.

The results in Figures 4(a)–4(d) show that, for each service, only a small portion
of accesses lead to high scores. This suggests that an administrator could choose a
threshold (for scores) to determine accesses that warrant further investigation. For
example, for the General Medicine service, if the threshold of LVS score is chosen to
be 4, there are 41 and 30 instances with a score of 5 and 6, respectively. There would
therefore be 71 access transactions promoted for further investigation. Similar actions
can be applied to LPS, GPS, and AGPS. Note here that in contrast to LVS and LPS,
the GPS and AGPS are for complete patient flows, as opposed to specific accesses.
For each patient, the GPS and AGPS provide an overall evaluation for his access.
Additionally, the four scores provide a characterization of the differences between the
patterns of the new and historical access logs. At the same time, it can be seen that
the distributions of the four scores do not exhibit a systematic pattern, which implies
that the deviation patterns differ across services. We recognize that a single run of the
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Fig. 4. Distributions of the deviation scores.

system is insufficient to make claims of statistical significance, but believe the results
are sufficient to demonstrate a proof-of-concept.

4.4. Analysis of Identified Deviations

We now use the LPS to analyze the deviations associated with nodes (access reasons)
and edges (reason transitions). We use LPS in this and subsequent analyses because
they are the most primitive combination of access-reason and access-reason-transition
deviation. Both GPS and AGPS are constructed from LPS.1 We analyze the node and
edge deviations separately. Note that node (and edge) deviation corresponds to the dif-
ference between the node (and edge) weight and the threshold ū (w̄). We count the
frequency of nodes with weights less than the threshold value ū (accesses with pos-
itive deviation scores). The results from Figure 5 suggest that most accesses with
high node deviation scores are not from physicians. Certain access reasons, such as
AP-Transcriptionist, Anesthesia Tech, Assigned Tech, and Social Worker, Psych for the
General Medicine service) produce more accesses with high node deviation scores. This
suggests that these reasons do not follow a regular pattern when accessing patient
EMRs. By contrast, there are other access reasons, such as Customer Service Coordi-
nator, Help Desk 1 troubleshooting, which follow a more consistent pattern.

The results for the edges contributing to positive LPS values are shown in
Figure 6. Our methodology counts the frequency of transitions with weights less than
the threshold value w̄ (transition with positive deviation scores) in the 75% testing

1LVS values do not have access reason transition information.
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Fig. 5. Frequency of reasons with positive contribution to the LPS scores.

dataset. For simplicity, we only pick the top 10 transitions for each service. The re-
sults suggest that a small proportion of transitions contribute significantly to the LPS
scores. The transitions between users who do not relate to clinical procedures will be
more irregular. Also, transitions between nurses and users who do not have clinical
responsibilities behave inconsistently as well.

The reasons for access in this dataset are strongly correlated with the user role.
Each user often has only one access reason in the system, therefore, we do not analyze
the distribution of the access reasons per role.

5. SIMULATION RESULTS FOR EFFECTIVENESS OF PFAD

In this section, we use two simulated environments to assess the intrusion detection
effectiveness of PFAD. We then compare PFAD with a specialized network anomaly de-
tection model (SNAD) [Chen et al. 2012b]. In lieu of knowledge of actual incidents, the
random simulation enables a controlled evaluation of the anomaly detection strategies.

5.1. Performance of PFAD in Simulated Environments

We use two simulation setups, which are defined as follows:

(1) Randomized User Simulation (RUS). In the first simulation setup, we select a user
at random, and randomize the access reason R of all his accesses. The randomiza-
tion for each access follows the procedure in which we randomly pick a reason and
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Fig. 6. Frequency of transitions with high contribution to the LPS scores.

substitute the original reason. We then execute the detection model. This process
is repeated 100 times.

(2) Randomized Reason Simulation (RRS). In this simulation, we randomly select a
set of users and randomize one access of each selected user. The access randomiza-
tion strategy is the same as the first simulation. We perform this analysis over 100
users in one run and perform a total of 100 runs.

To randomize the access reason, we randomly change the order of care in the patient
care process. For example, assume that “Primary Staff Nurse → Attending Physi-
cian → Billing” is a reason sequence. We randomly pick “Billing”, and change it to
another reason, “Pharmacist”, which was picked at random. These simulations are
used to evaluate whether the system can detect this change as a deviated transition.

For each simulation, we use the LPS value and provide the anomaly detection rates
of PFAD under different false positive rates. The false positive rate for a given thresh-
old score is calculated as the number of nonrandomized accesses with LPS scores above
the threshold divided by the total number of nonrandomized accesses. The true pos-
itive rates are calculated by dividing the number of randomly revised accesses with
anomaly scores above the threshold by the total number of randomly revised accesses.
We choose different threshold scores to calculate both rates. For each false positive
rate, we resample 25% data for 30 times. In each resampling, we run 100 simulations
to calculate the average detection rate. The results are summarized in Figures 7(a) and
7(b). The area under the ROC curve (AUC) values for all four service types suggest the
effectiveness of PFAD. Specifically, it can be seen that in a randomized user scenario,
the AUC ranges from 0.83 for Hospital Medicine to 0.92 for Pediatrics. Similar results
were found in the randomized reason scenario.
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Fig. 7. ROC curves for the PFAD model in various simulation settings.

5.2. Comparison with SNAD

In this section we compare PFAD with a variation of the Specialized Network Anomaly
Detection algorithm (SNAD) [Chen et al. 2012b] under the two simulation setups pre-
sented in Section 5.1. We chose SNAD because it also uses a graph-based model and
has been shown to be more effective and efficient compared to other strategies (e.g.,
spectral anomaly detection [Chen and Malin 2011]) when searching for specific anoma-
lous accesses. In the original version of SNAD, a local access network of users is con-
structed for each patient. It then calculates the similarity of the users’ access patterns
in the network. SNAD then evaluates each access by comparing the similarity of an
access network to a subnetwork that suppresses one of the network’s users. When
the similarity between the network and subnetwork are significantly different, SNAD
claims the suppressed user’s access was an anomaly. For this study, we make a gener-
alization of SNAD, so that the local access network is focused on a reason as opposed to
a patient. More specifically, our variation on SNAD treats each access as a pair (u, r),
where u is the user associated with the access and r is the attribute value; e.g., Chart
Access Reason. For access reason r, SNAD establishes a network for all the users who
accessed reason r. Based on these networks, SNAD calculates a score for each pair
(s, r). For PFAD, we use the LPS score for comparison. A fundamental difference be-
tween PFAD and SNAD is that the former learns a model from the training data set
and evaluates any new access with the learned model. SNAD, by contrast, only uses
the evidence presented in a single time period.

Since running simulations with SNAD is time consuming (see later discussion), we
compared the two techniques only at the 1.5% false positive rate. Recall that we first
pick a threshold score such that the false positive rate is about 1.5%. For both detec-
tion models, we first implement the model without any randomization. For PFAD, we
perform 30 runs for each simulation by randomly sampling 25% data each time and
use the results to estimate a 95% confidence interval of the mean positive rate. The
average runtime of the two models is the average seconds per scored access. The algo-
rithms were implemented in the R statistical software package [R Development Core
Team 2008] and all experiments were run on a Dell 6420 using an Intel Core i5-2520M
2.50GHz with 4GB of RAM using 32-bit Windows 7.

Table V summarizes the results of the comparative analysis. First, it can be seen that
SNAD achieves a better detection performance than PFAD for the General Medicine
and Hospital Medicine services, whereas PFAD is better for the Obstetrics and Pedi-
atrics services. This implies that these methods may be complementary in practice.
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Table V. Summary of Comparison Results between PFAD and SNAD

Service
RUS RRS Average runtime

PFAD SNAD PFAD SNAD PFAD SNAD
General Medicine (45.13%, 45.67%) 71.2% (45.26%, 45.58%) 61.4% 2.44 × 10−5 0.522
Hospital Medicine (46.92%, 47.43%) 70.3% (47.64%, 47.99%) 61.7% 2.63 × 10−5 0.297

Obstetrics (63.44%, 63.63%) 57.5% (62.02%, 63.07%) 52.0% 2.63 × 10−5 0.117
Pediatrics (77.52%, 77.85%) 58.5% (77.43%, 77.71%) 53.7% 2.57 × 10−5 0.222

Intuitively, patients in Obstetrics and Pediatrics follow standard procedures so the se-
quential pattern-based deviations will be less significant. The patient care procedures
contain more randomness for patients in General Medicine and Hospital Medicine,
both of which admit patients with a larger variety of medical conditions. For these
situations, PFAD in its current form, is likely to be less effective.

Second, PFAD has similar performance for both randomized user and reason scenar-
ios, whereas SNAD performs better for the randomized user. This is because all of the
accesses of one user were randomized in the randomized user setting, which implies
that the behavior of this user has changed significantly. However, in the randomized
reason, we only revise one access of each user. Since PFAD focuses on the patterns at
the level of an access reason and an access reason transition, its performance is stable
for both settings. The different true positive detection rates for the four services sug-
gest that the patterns in different services are different, so partitioning the dataset
according to the hospital service type is important.

Finally, it is clear that PFAD can achieve its computation much faster than SNAD,
which is important when an HCO needs to process a large amount of data in a
short amount of time. Consider, in this dataset, there are more than 50, 000 ac-
cesses. The total runtime for processing this data daily is less than 50000 × 2.63 ×
10−5 ≈ 1.5 seconds. The worst-case running time for SNAD for such a dataset is
50000 × 0.522 ≈ 7 hours. This significant difference is made clearer when we look
into the computational complexity of the algorithms. The runtime complexity of SNAD
is O(m×log m×(log n)2), where m is the number of possible values of attribute R and n
is the number users. For PFAD, graph construction takes O(m) effort. Then each new
access is compared with the corresponding weight in the graph, which requires O(1)
time. Clearly, PFAD will scale to larger medical record access logs at a more graceful
rate than SNAD. Moreover, the results suggest a potential to support online computing
in large information systems.

6. DISCUSSION AND CONCLUSIONS

In this article, we proposed a graph-based framework for scoring the irregularity of
EMR users’ accesses in a temporal setting. In the model, vertices represent the total
number of a selected attribute R and the edges are used to represent the order infor-
mation of the accesses for each patient. Based on the graph model, we proposed four
types of measures to capture irregularity at the level of a local access and a global
path for a patient’s EMR. These scores can be used to evaluate individual accesses and
the access path of each patient. We demonstrated this methodology using one particu-
lar attribute (Chart Access Reasons) in a real dataset of accesses to inpatient medical
records at a large hospital. Since most EMR systems can provide a timestamp for each
access, our methodology can be readily expanded to different systems for different at-
tributes. For instance, while our investigation focused on the Chart Access Reason, the
approach readily generalizes to other attributes, such as hospital location or medical
service caring for the patient. Moreover, each attribute could be weighted according to
relative importance. The main contribution of this methodology can be summarized as
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follows: (1) it provides a clear and convenient way to support a system administrator
in the analysis of access logs; (2) it has low complexity with good performance; (3) it
can be easily extended to any information system with access logs that can be grouped
according to each task and represented by sequences. We believe that the patient-flow-
based approach provides a new perspective on EMR auditing and may assist hospital
privacy officials in their investigative activities.

From an empirical perspective, we showed that this framework can appropriately
segment the system into patterns of flows, from which only a small portion of accesses
sufficiently deviate to raise an alarm. In the process, we showed that a small num-
ber of reasons and transitions between reasons contribute to a majority of deviation
scores. We wish to highlight that the deviation pattern varies among different hospital
services. As a specific example, we observed that that nonclinical users tend to exhibit
greater deviations from such access patterns, suggesting that greater access control
for this user group may improve EMR security.

At the same time, there are several limitations of the current work that we wish
to point out. First, since our method is data-driven, it requires a nontrivial amount
of data to train the graph-based model. This may be problematic when the number of
elements for the studied attribute is large. Additionally, it should be recognized that
patterns in EMRs may evolve over time [Malin et al. 2011] and exhibit seasonal de-
pendencies. It is thus recommended that the graph-based models, be retrained after a
certain amount of time. Further research should investigate the stability of such pat-
terns over long time frames. Second, our model is restricted to a one-step transition
model, which limits the sequential pattern that can be represented and leveraged for
anomaly detection. Third, the four scores utilized by our model are biased to detect un-
common events, which may, in certain instances, be acceptable. Fourth, our one-step
transition analysis illustrates the power in modeling the progression of reasons, but
should be extended to consider time between events. Fifth, this study focused on the
detection of simulated anomalies in the context of real data, but did not determine if
any of the false positives were in fact, suspicious anomalies. It will be useful to review
all detected anomalies with privacy officials, who may be able to provide an interpreta-
tion of the deviation patterns. Despite these limitations, our strategy identifies novel
types of anomalies that can supplement a larger security framework. It can be read-
ily combined with other EMR anomaly detectors (e.g., SNAD) and, when necessary, be
preempted by knowledge supplied by HCO experts to ensure that certain exceptions
are always granted.
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